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1 Introduction

Environmental regulations often require polluting agents to comply with recom-
mended pollution limits or standards while they engage in production activities.!
Normally, authorities do not observe the performance of firms with respect to
such limits, unless they incur in costly monitoring. Regulators then design en-
forcement policies which consist of frequencies of inspection and sanctions in
case firms are found violating the standards.

Generally, penalties for noncompliance have two components.? The gravity-
based sanction is directly related to the degree of noncompliance, accounting
for factors such as the seriousness of the violation, the degree of culpability
involved, mitigation efforts or any history of prior violations. The non-gravity-
based sanction considers additional factors such as the economic impact of the
penalty on the violator or other matters that justice may require. Generally,
there exists flexibility regarding the final structure of the penalty to be imposed,
with the limit of the violator’s statutory maximum civil penalty liability.

While this structure of fines plays a key role in the likelihood of compli-
ance with environmental rules, surprisingly it has not been yet studied in the
literature.?

In this paper, we investigate this issue. For that purpose, we consider a model
in which the regulator sets a pollution standard and a probability of inspection,
considering the optimal behavior of the firm with respect to the policy. If a firm

is discovered violating the standard, then it is forced to pay a sanction, which

L An example is EPA’s National Pollutant Discharge Elimination System Program, where
facilities which discharge pollutants into waters of the US are required to obtain a permit to
release specific amounts of pollution.

2See, for example, the Civil Penalty Policy of the Clean Water Act.

3See Heyes (2000) for a complete review.



has both fixed (non-gravity-based) and non-fixed (gravity-based) components,
the latter being strictly increasing and convex in the degree of violation.*

We find that the optimal policy can induce either compliance or noncom-
pliance with the environmental standards. In any event, the induced pollution
level is always larger than the efficient pollution level, that is, the level that
maximizes social welfare in the hypothetical case that enforcement costs were
zero. Therefore, there exists a trade-off between efficiency and monitoring costs:
the larger the monitoring costs, the larger the difference between the efficient
and the induced pollution levels.

In the case the gravity-based sanction is linear in the degree of noncompli-
ance, we undoubtedly find that the optimal policy induces compliance, regard-
less of the level of the non-gravity component This is so because the optimal
pollution level does not depend on the degree of noncompliance, and therefore,
it is not affected by the standard. Then, it is not possible to save monitoring
costs by means of a reduced standard (or, equivalently, a larger fine).

If the gravity-based sanction is strictly convex, we find that the optimal
policy can induce either compliance or noncompliance. In the event of noncom-
pliance, we show that the optimal standard is zero. Here, the induced pollution
level depends negatively on the degree of noncompliance (then, positively on
the standard) and negatively on the probability of inspection, and it is possible
to keep a given pollution level decreasing both the standard and the inspection
probability accordingly, then saving monitoring costs.

Whether the optimal policy induces compliance or noncompliance depends

on the monitoring costs and the level of the sanctions. Regarding the former,

4The convexity of the sanction is usually accepted in both efficiency and equity terms (for
example, see Shavell (1992)).



we show that it is more likely that the optimal policy entails noncompliance
when monitoring costs are high. This result is reasonable, reflecting the fact
that when inspections are very costly, monitoring may be insufficient to induce
firms’ compliance.

With respect to the latter, we find that compliance is more likely when the
non-gravity-based sanction is large enough. Surprisingly, however, it is more
likely that the optimal policy induces noncompliance when the gravity-based
sanction is sufficiently large. In fact, this latter result is in general contrary
to the one predicted by the literature on either crime or tax evasion, where an
increase in the sanction increases compliance.” However, there the standard —
or the level which delimits a certain behavior to be punishable or not— is given.
Here, the standard is determined endogenously in the model, and therefore, it
changes when there is a change in the level of the sanctions.

The explanation of the result is as follows. The social welfare evaluation
of each policy is determined by the firm’s induced behavior to such a policy
and the monitoring costs. In our model, each possible pollution level e can
be induced by two kinds of policies. One is a compliant policy, which consists
of announcing a standard equal to such pollution level and the probability of
inspection necessary to induce the agent to comply with the standard. The
other one is a noncompliant policy, which consists of announcing a standard
equal to zero and the probability of inspection that induces the agent to pollute
e. The cheapest policy is the one with the lowest inspection probability. When
the gravity-based sanction increases, the degree of noncompliance to a given

standard decreases, and, given the convexity of the sanction, the smaller the

5Some exceptions include Kambhu (1989), Malik (1990), Andreoni (1991), Harrington
(1988) or Livernois and McKenna (1999).



standard, the more it decreases. Thus, the probability needed to induce a certain
pollution level e decreases in both types of policies, but it decreases more the
one associated with the noncompliant policy. Consequently, for sufficiently large
gravity-based sanctions, the optimal policy may induce noncompliance.

The literature on environmental regulation has not considered the two com-
ponents of the penalties analyzed here. Within the closest literature, there
are some papers which determine optimal policies constrained to the subset of
policies which induce compliance, such as Ellis (1992a) or Amacher and Ma-
lik (1996), the latter one in a bargaining context. More recently, Arguedas
and Hamoudi (2004) and Arguedas (2005) study optimal regulatory policies,
allowing for noncompliance. Both assume strictly convex gravity-based and
zero non-gravity-based penalties, and also that firms can decide on technology
investment as well. It is obtained that the optimal policy always induces non-
compliance, not necessarily to a zero standard in the latter case. Therefore,
these previous results are in accordance with the ones presented in this paper,
in the sense that noncompliance is more likely when non-gravity-based penalties
are small enough.

The remainder of the paper is organized as follows. In the next section, we
present the model. In Section 3, we study the optimal behavior of the firm with
respect to each feasible policy. In Section 4, we analyze the characteristics of the

optimal policy. We conclude in Section 5. All the proofs are in the Appendix.



2 The Model

We consider a firm that generates pollution as a by-product of its production
activity. This firm obtains private profits dependent on the pollution level e > 0
and represented by the function b (e), which is strictly concave with an interior
maximum at € > 0. Also, b(0) = 0 and " (¢) > 0 and sufficiently small.

Pollution generates external damages measured by the function d (e), which
is strictly increasing and convex in e, and such that d (0) = 0.

Let e be the efficient pollution level, i.e., e = argmax.>o {b(e) —d (e)}.
In the absence of a regulation, the firm would not internalize the presence of
external damages and pollution would be € = argmax.>ob(e) > ev.

We assume there exists a regulator who sets a standard s > 0, that is, a
maximum permitted pollution level. The regulator cannot observe the pollution
level selected by the firm unless it engages in a monitoring activity, which is
costly and perfectly accurate. The cost per inspection is ¢ > 0. Since inspection
is costly, it is generally not desirable to inspect the firm in every instance but
only occasionally. Therefore, the regulator also sets the probability of inspection,

€ [0,1]. Once inspected, if the firm is discovered to be violating the standard,
i.e., if e > s, then it is forced to pay a penalty that depends on the degree of

noncompliance, e — s. Formally, we assume that the sanction takes the following

structure:

a+gle—s)+h(e—s) ife—s>0
fle—s)= )
0 fe—s5<0



where @ > 0, g > 0, h > 0 and ¢g? > 2ah. Observe that a is the non-gravity-
based sanction. If @ > 0, then the sanction is discontinuous at 0. We assume
that the sanction is fixed by a government entity other than the regulator, for
example, the judiciary.b

We consider a principal-agent framework in which the regulator chooses the
social welfare maximizing regulatory policy considering the optimal response
of the firm to a given policy. We consider the subgame perfect equilibrium
concept. Therefore, we solve the problem backwards, that is, we first find the
firm’s optimal pollution level in response to a given policy, and we then find
the optimal policy that maximizes social welfare considering the firm’s optimal
response.

Given a feasible policy {s, p}, the firm chooses the pollution level that maxi-
mizes its expected payoff, that is, its private profits minus its expected penalties,

which is represented as follows:

P (s,p) :glgg{b(e) —pfle—s)} (2)

Let e (s, p) be the firm’s optimal pollution level given {s, p}, that is, e (s, p) =
arg maxe>o {0 (e) —pf (e — s)}. Observe that e(s,p) < ¢, the pollution level
selected by the firm in the absence of regulation. Given the assumptions of

the model, e (s, p) is unique if the sanction is continuous at 0 (that is, if a =

6This assumption is common in the literature on environmental regulation, except in Heyes
(1996) and Arguedas (2005), for example. In other contexts, such as crime, there are several
papers devoted to endogenize fines together with probabilities of inspection, such as in Becker
(1968), Polinsky and Shavell (1979, 1990) and Bebchuck and Kaplow (1991), among others. In
the context of tax evasion, few papers consider endogenous fines. See, for instance, Mookherjee
and Png (1989) and Pestieau et al. (1997).



0). Otherwise, e(s,p) is unique except when the firm is indifferent between
complying and not complying with the standard. In this latter case, we assume
that the firm chooses to comply.

Considering the firm’s optimal response, the regulator now selects the policy

that maximizes social welfare. We define social welfare to be:

SW(Svp) = P(S,p)*d(@(S,])))ﬁ*pf(E(S,p)*S)fpc

(3)

Thus, the regulator is concerned about the expected payoff of the firm, the
generated damages, the expected collected fines and the expected monitoring
costs. We assume that there are no social costs associated with the collection of
the fines, and that fines are redistributed lump-sum, that is, they do not distort
behavior. Also, note that we do not impose any budget requirement on the
monitoring activity.”

An important assumption of our model is that the regulator commits to the
announced regulatory policy, that is, it monitors the firm with the announced
frequency, even when, in some instances, it would find it profitable to devi-
ate from the announced policy. Commitment can be justified considering that
the regulator has to build up a reputation, that is, it has to make his policy

announcements credible among the firms to induce the desired behavior.?

"We could consider consumers’ surplus in social welfare. However, since consumers are
passive actors in our model, this would not add any qualitative differences to the results.
Obviously, there would be quantitative differences, since consumers’ consideration might result
in more lenient regulations.

8 A formal justification of this assumption would require the consideration of a dynamic
model, which is beyond the scope of this paper. In static models such as ours, the assumption
of commitment is common in almost all the literature. Some exceptions include Ellis (1992b)
and Grieson and Singh (1990).



In the next section, we study the behavior of the firm with respect to the

announced policy.

3 The Optimal Behavior of the Firm

Consider a policy {s,p}, such that s € [0,¢] and p € [0,1].° The firm solves the

following problem:

max {b(e) — pf (e —s)} (4)

where f (e — s) is given by (1). Let e (s, p) be the solution to problem (4).

Given {s,p}, if the firm complies with the standard, it is not penalized. By
the assumptions of the model, the optimal compliance decision is s and the
firm’s payoff is b (s).

If the firm violates the standard, i.e., e > s, there is a chance that the
firm is inspected and punished. In this case, its expected payoff is b(e) —
D (a +gle—=s)+h(e— s)2> Let n(s,p) > s be the optimal noncompliance
decision and let 7 (s,p) be the corresponding noncompliance payoff. Observe
that n (s,p) < €. By the assumptions of the model, the condition that charac-

terizes the optimal noncompliance decision is the following:

b (e) =p(g+2h(e—s)) ()

The optimal noncompliance decision and the corresponding firm’s payoff are

9The regulator is not interested in a standard larger than €, that is, the pollution level that
the firm would select in the absence of regulation.



well-defined only if ¥’ (s) > pg. For example, consider Figures 1 and 2, where
we represent two possible cases of the firm’s expected payoff to a given policy
{s,p}, for the different values of the pollution level. In Figure 1, the optimal
noncompliance decision exists (in fact, noncompliance is preferred in this case),
while it does not exist in Figure 2. In both figures, the sanction is discontinuous
at zero, which implies that the firm’s expected payoff is discontinuous at e = s.

Implicitly differentiating (5), we obtain n, (s,p) = %g;};} and ng (s,p) =

2hp

— 0 o By the assumptions of the model, we then have n, (s,p) < 0 and

0 < ns(s,p) < 1. That is, the pollution level selected by the firm in the event of
noncompliance strictly decreases when the probability of inspection increases,
and it increases when the standard increases. However, since ns (s,p) < 1, the
degree of violation strictly decreases when the standard increases.'®

Now, given {s,p} such that b’ (s) > pg, the firm selects whether to comply
or not depending on the expected payoff of each possibility. Thus, the firm’s
optimal response is the following:

s if b(s) >m(s,p)

e(s,p) = (6)
n (s,p) ifb(s) <m(s,p)

The firm’s expected payoff given by (2) can be further expressed as:

P(s,p) = max {b(s), 7 (s,p)} (7)

For example, considering Figure 1 again, we have b(s) < 7 (s,p) and, in

consequence, e (s,p) = n(s,p). Therefore, P (s,p) = 7 (s, p).

10Note that ns (s,p) = 0 when either h = 0 (i.e., when the sanction is linear), or p = 0 or
both.
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In the following lemma, we present the properties of P (s,p).

Lemma 1 The function P (s,p) is nondecreasing and concave in s, nonincreas-
ing and convex in p, and has a nonnegative cross partial. Moreover, P (s,0) =

b(e) for all s € [0,€].

For the subset of policies such that b’ (s) > pg, we now characterize the set
of policies where the firm is indifferent between complying and noncomplying,

which is given by the following equation:

b(s) = (s,p) (8)

This expression defines an implicit relationship between p and s, i.e., a map-
ping p° (s) such that (8) holds. Given s, p° (s) represents the minimum inspec-
tion probability necessary to induce the firm to comply with the standard.!! In

the following lemma, we present the properties of p° (s).

Lemma 2 The mapping p°(s) is strictly decreasing and convexr in s. Also,
p€ (€) = 0. Moreover, if maxeso {b (e) — (a +gle—s)+h(e— s)2>} > 0, then

there exists s € (0,€) such that p°® (5) = 1.

In Figure 3, we represent the function p° (s) in the space of feasible policies
{s,p}. We also include the firm’s indifference map, where each indifference curve
is composed of the set of policies {s,p} which give the firm the same expected
payoff. On the horizontal axis, we measure the standard and on the vertical

axis we measure the probability of inspection.

'When the sanction is continuous at 0, (8) never holds since the maximand in (2) is
continuous at s. In this case, the firm complies with the standard only if ¥’ (s) < pg. Therefore,
the threshold probability between the compliance and violation decisions in that case is given

’
by p°©(s) = b ;S), which is strictly decreasing and convex in s, by the assumptions of b (e).

We will refer to this case later on (see Lemma 4, below).

11



Observe that standards smaller than § cannot be enforced since p° (8) = 1.
Concerning the shape of the function p°(s), enforcing a small pollution level
requires more monitoring effort than enforcing a large pollution level, since
profits for the firm are strictly increasing and concave in the pollution level;
also, the probability of inspection decreases more than proportionally when
the standard increases. Above the curve p€(s), the agent strictly prefers to
comply with the regulation; and below p°(s), the agent strictly prefers not
to comply. Consequently, p© (s) divides the space of feasible policies into two
regions, namely the compliance and the noncompliance regions.

In the compliance region, the firm’s expected payoff is b (s), that is, it does
not depend on the probability of inspection. Therefore, indifference curves in
that region have an infinite slope. In the noncompliance region, the expected
payoff is 7 (s, p) and the indifference curves when p > 0 have a positive slope.!?
Moreover, by Lemma 1, the expected payoff of the firm increases to the south-
east, i.e., whenever the standard is larger and the probability of inspection is
smaller.

We now analyze the firm’s optimal response to each feasible policy. Con-
sider the case in which fines are strictly convex in the degree of violation (i.e.,
h > 0) and take, for instance, a standard . From the previous analysis, there
exists a probability of inspection p° (3) such that, for all p > p° (3), the optimal

response is e = 3§, i.e., to comply with the standard. At p = p°(3), the firm

12To see the shape of an indifference curve in the noncompliance region, we implicitly
differentiate 7 (s,p) =b(n) —p (a +g(n—38)+h(n— s)2> =k, where n = n (s,p):

d +2h(n—s
_p|7r:k:p g ( ) 2>O
ds at+g(n—s)+h(n—2s)

12



is indifferent between complying and not complying, i.e., between choosing ei-
ther 3 or n (5,p° (3)) = arg maxes {b (e) — p° (3) <a +g(e—s)+h(e— s)2> }
Therefore, behavior is discontinuous at p = p®(38). Finally, at p < p°(3), the
optimal response is to violate the standard, i.e., e = n (3, p), which is strictly
decreasing and convex in the probability of inspection. (Note that ny, (s,p) >0

13

since " > 0). Given 3, pZ (e) denotes the inverse of the function n (3, p), and
represents the probability necessary to induce the pollution level e, under the
standard §, where e > 3. Since n (3, p) is strictly decreasing and convex in p,

the inverse function pZ

(e) is also strictly decreasing and convex in e. Observe
that p2 (€) = 0, since n (35,0) = €.

Consider now an alternative standard s, such that s > 3. On the one hand,
by Lemma 2, the minimum probability necessary to induce compliance with §
is lower than that necessary to induce compliance with 3, i.e., p®(s) < p°(3).
At p = p© (), analogously, there exists a discontinuity. And for p < p€(9),
the firm’s optimal choice is to violate s, i.e., e = n(S,p). Finally, since the
optimal noncompliance decision increases when the standard level increases,
we then have n(s,p) > n(s,p), for all 0 < p < p°(8). Therefore, we have
P2 (e) < pZ (e), for all e. Obviously, when p = 0, we have n (5,0) =n(5,0) =€
and, therefore, pZ (€) = p% (e) = 0.

S

When sanctions are linear (i.e., h = 0), we have ns (s,p) = 0. Therefore,

7

P2 (e) = pZ (e), for all e and for all 5, 5 such that 5 # s.

S

Once we have studied the firm’s optimal response to each feasible policy, we

are now ready to analyze the features of the optimal policy.

13



4 The Optimal Regulatory Policy
The regulator anticipates the firm’s optimal response, and takes it into account
when selecting the optimal policy. The regulator then solves:

max SW (s,p) = P (s,p) —d(e) + pf (e = s) —cp 9)

S,P

where P (s,p) is given by (7), e = e (s, p) is given by (6), s € [0,¢] and p € [0,1].

Considering (6) and (7), we can reduce (9) to the following problem:

max {b(e) —d(e) — cp}

s,p

s.t. e=e(s,p) (10)

where e (s, p) is given by (6). Since fines are costless transfers, they are not in
the objective function in (10), although they affect the firm’s induced behavior
given by e = e (s, p).

Remember that e = arg max.>o {b(e) — d (e)} is the efficient pollution level
and e < €, the pollution level selected by the firm in the absence of regulation.
We denote by p™ (e) the probability needed to induce the pollution level e under
the standard s = 0, that is p™ (e) = p§ (e). Also, recall that p° (e) represents the
minimum probability needed to induce the firm to comply with the standard
s = e. In the next proposition, we characterize each one of the two possibilities

for the optimal policy.'?

131n the proposition we implicitly assume that both p® () and p™ (e¥) exist (i.e., both are
at most 1). If any of them does not exist, we trivially have e (s*,p*) > e¥.

14



Proposition 3 If the optimal policy (s*,p*) induces compliance, then s* >
e¥ and p* < p®(e¥). Conversely, if it induces noncompliance, two cases are
possible:

(2) If gravity-based sanctions are strictly convex in the degree of violation, then
s* =0, p* <p"(e?) and e(0,p*) > e*.

(1) If gravity-based sanctions are linear, then s* € [0,5) where S is such that

p*=p°(3), p* <p"(e”) and e (0,p*) > €.

The proposition shows the characteristics of the optimal policy constrained
to induce either compliance or noncompliance. The solution to (10) is the
possibility that yields the highest expected social welfare.

In Figures 4 and 5, we represent, respectively, the optimal policy inducing
either compliance or noncompliance. On the horizontal axis, we measure the
pollution level and on the vertical axis we measure the probability of inspection.
In both graphs, we represent the map of iso-welfare contours for the regulator,
where each iso-welfare curve represents the set of pairs pollution level - inspec-
tion probability where social welfare is constant. These contours are inverse-U
shaped, and welfare decreases in all directions from the bliss point (e%,0).!4

From the analysis of the previous section, we can see that each possible
pollution level e can be induced by two kinds of policies. On the one hand,
the regulator might announce a compliant policy, that is, a standard s = e

and the minimum probability of inspection necessary to induce the agent to

comply with the standard, given by p° (e). On the other hand, it is possible to

1To see this, we implicitly differentiate the equation b (e) —d (€) — cp = k to obtain %E k=
/ U
ﬂg;ﬂg}v which is positive for e < e¥; equal to 0 for e = e%; and negative for e > e".

b// (e) 7d// (e)
c

2
Moreover, % k= <0.

15



announce a noncompliant policy which, in the case of strictly convex gravity-
based fines, consists of a standard s = 0 and the probability necessary to induce
the pollution level e under s = 0, given by p" (e). Thus, p" (e) represents the
minimum probability necessary to induce the agent to pollute the level e in
the event of noncompliance. To see this, note that the pollution level chosen
by the firm increases as the prescribed standard increases, and it decreases as
the probability of inspection increases. Therefore, if we assume that the policy
{s,p}, for s > 0, leads the agent to choose a pollution level e larger than s,
then there exists another policy, where both p and s are smaller, and such
that it induces the agent to select the same pollution level. Clearly, the second
policy is cheaper than the first one, since the probability of inspection is smaller.
Thus, the cheapest way to induce the agent to pollute a certain level e is with
a standard s = 0 and the probability p” (e).

However, in the linear case, the optimal noncompliant decision does not
vary with the standard. In that case, the noncompliant policy to induce a given
pollution level e is given by a standard s € [0, e) and the probability necessary
to induce the pollution level e under the standard s € [0,e). Since ng (s,p) =0
in this case, we then have p™ (e) = p? (e), for s < e. Thus, both cases depicted
in Figures 4 and 5 correspond to the case in which gravity-based penalties are
strictly convex.

Both functions p° (e) and p" (e) are strictly decreasing and convex in e, as
shown in Section 3. The feature that both functions cross in the way depicted
in Figure 4 is established in Lemma 4, below.

Proposition 3 shows that, whenever monitoring is costly, the optimal policy

always results in inducing the agent to overpollute, i.e., to choose a pollution

16



level larger than the efficient level e. Therefore, there exists a trade-off between
efficiency and monitoring costs; at the optimum, the marginal loss in efficiency
is equal to the marginal savings in monitoring costs, independently of whether
the policy induces compliance or noncompliance.

It can be easily verified, using both (24) and (26), that when monitoring costs
increase, the new optimal policy results in a smaller probability of inspection
and a larger chosen pollution level. Graphically, an increase in monitoring costs
can be represented by flatter iso-welfare contours and no change in either p° (e)
or p" (e).

Until now, we have characterized the optimal policy constrained to induce
either compliance or noncompliance. The next step is to analyze the factors that
influence which is the case. In the following lemma, we show that the situations
depicted in Figures 4 and 5 are not the only ones we may have. There can be
cases in which the function p° (e) lies below the function p™ (e), depending on
the level and convexity of the sanctions. But if the functions cross, they do so

as depicted in Figure 4.

Lemma 4 (i) If a = 0, then p° (e) = p™ (e) for all e when gravity-based sanc-
tions are linear, and p°(e) > p" (e) for all e < € when gravity-based sanctions
are strictly convez.

(1) If a > 0, p®(e) < p"(e) for all e < € when gravity-based sanctions are
linear. When they are strictly convex, there exists a, @, @ > a, such that for all
a < a, p°(e) > p"™(e) for all e < ¢€; for all a € [a,al, p© (e) and p™ (e) cross once
at a point other than (€,0) and, at the point of intersection, p™ (e) < p® (e) < 0;

and for all a > @, p°®(e) < p" (e) for all e < €.
Thus, there is no doubt about the type of optimal policy that we obtain in

17



each case, except when penalties include the non-gravity-based component and
the gravity-based sanction is strictly convex. In this case, we have shown that
the solution depends on the location of the point of intersection between p° (e)
and p™ (e). In the following lemma, we show that the location of this point

depends on the level and the convexity of the sanction.

Lemma 5 Given h > 0 and a € [a,a], when the gravity-based sanction in-
creases, the new point of intersection between p° (e) and p™ (e) is such that e is

smaller and the probability of inspection is larger.

Combining Lemmas 4 and 5, we then have the main result:

Proposition 6 When the gravity-based sanction is linear, the optimal policy
always induces compliance. When the gravity-based sanction is strictly conver,
three cases are possible:

(1) If a < a, the optimal policy induces noncompliance.

(#3) If a € [a,a], the optimal policy induces noncompliance when monitoring
costs are sufficiently large, and also when the gravity-based sanction is suffi-
ciently large.

(#i7) If a > @, the optimal policy induces compliance.

In Figure 6, we present a summary of the results. Therefore, noncompliance
to the optimal policy depends crucially on the convexity of the gravity-based

sanctions. As we have shown, when sanctions are linear, the optimal policy

15

always induces compliance.”> However, if gravity-based sanctions are strictly

15This result clarifies a point made in the literature that concentrates only on the subset of
policies which induce compliance. For example, Amacher and Malik (1996) assume linear fines
and argue that restricting attention to this subset of policies may be overstating enforcement
costs, that is, there may be a noncompliant policy that induces the firm to choose the same
pollution level with a lower probability of inspection. However, we have shown that when fines
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convex, the result depends both on the monitoring costs and the level and
convexity of the sanctions. Then, it is more likely that we have noncompliance
when non-gravity-based sanctions are small. This result goes in accordance with
the literature on crime, which generally considers constant sanctions, that is,
independent on the degree of violation.

The interesting case is when a € [a, @], that is, when there exists a point
of intersection between p°(e) and p™ (e), as in Figure 4. There, the optimal
policy induces noncompliance when monitoring costs are large, that is, when
the iso-welfare contours are flat enough. This result is reasonable since, when
inspections are very costly, enforcement may not be enough to induce the firm
to comply with the regulation.

Finally, and somewhat surprisingly, the optimal policy may induce noncom-
pliance when the gravity-based sanctions are large (that is, when g and/or h
are large). As discussed in the Introduction, this result is in general contrary to
the one predicted in the literature, which states that an increase in the level of
the sanctions increases compliance. However, as we have pointed out already,
the main difference between our approach and the one followed in the literature

concerns the endogenization of the standard.

5 Conclusions

In this paper, we have studied the characteristics of optimal regulatory policies
composed of pollution standards and probabilities of inspecting firms’ behavior,

where sanctions depend both on gravity-based and non-gravity-based compo-

are linear, the optimal policy always entails compliance. Therefore, there is no overstatement
of enforcement costs in that case, since the set of policies that induce compliance is the
appropriate set to consider.
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nents.

We have demonstrated that the optimal policy can induce either compli-
ance or noncompliance with the standards, depending on the monitoring costs,
and the level and convexity of the sanctions. In contrast to previous literature,
we have shown that when gravity-based sanctions are strictly convex, noncom-
pliance with the standards is more likely when sanctions are large than when
sanctions are small.

Several extensions of our study are possible. For instance, we have assumed
that inspections are perfectly accurate. However, the degree of accuracy of a
monitoring process generally depends on its cost: the more resources devoted
to monitoring, the more accuracy in measurement. This may affect the optimal
policy as well as firms’ response to the policy, specially under risk aversion,
and it may be interesting to endogenize the optimal degree of accuracy of the
monitoring policy.

The problem of fully determining the optimal standards, probabilities of
inspection and fines has not been solved. This may be, indeed, an interesting
problem to look at, considering the full range of policies, since this may help us
to study the different types of penalties from a welfare perspective.

Also, we have obtained that, whenever there is noncompliance, the optimal
standard is zero. This suggests, under some circumstances, the superiority of
probabilistic environmental taxes to pollution standards. A possible explanation
for this result is that we have assumed that there are no social costs associated
with the imposition and the redistribution of fines. If we assumed, more realis-
tically, that these costs are strictly positive, this would not affect firms’ optimal

behavior, but it would decrease social welfare in the event sanctions were actu-
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ally imposed. Therefore, it may be more likely that the optimal policy induces
compliance in that case. But, if it continues to induce noncompliance, it may
be the case that the optimal standard is positive, since this implies a reduction
of the expected fines and, thus, a social cost savings.

All these issues are left for future research.

6 Appendix

Proof of Lemma 1.
To prove the first part, when P (s,p) = b(s), the function is strictly in-
creasing and concave in s, but it does not depend on p. Conversely, when

P (s,p) =7 (s,p) = maxXess {b(e) —-p <a+g(ef s)+h(e— s)2>}, we have:

7o (5,0) = p(g+2h (n(s,p) —s)) >0 (11)
s (8,0) = 2hp (ns (s,p) — 1) = —2hp% <0 (12)
™y (5.9) = = (a+9(n(s,p) =)+ h(n(s.p) = 5)°) <0 (13)
o 5:7) = 20 0 5.) ~ )y 5,p) = ~LEREEDZ

(14)
Tap = 0+ 2h (1 (5,0) — 8) + 2hpm, (s,p) = LY (gb+(f§ (_”2(2;91’) b))

(15)

Summing up both possibilities we obtain the desired result.

To prove the second part, note that, for all s > 0, we have 7 (s,0) =

maxesob(e) =b(€). Thus, P(s,0)=0b(e). m
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Proof of Lemma 2.

Implicitly differentiating (8), we have:

(o) = T < (16)

The denominator is negative (by (13)). The numerator is positive since
s (s,p) = b (n) (by (5) and (11)), n(s,p) > s and b(e) is strictly concave,
which implies that o' (s) > ' (n).

To prove the strict convexity, we differentiate (16) with respect to s:

p(s) = L) = Mo = meppmy = [V (5) = o] [mop + mppp”]

B (Wp)z

(17)

Observe that the sign of (17) is determined by the sign of the numerator.
The first expression in brackets of the numerator can be expressed, using (12),

(15), and (16), as follows:

b (8) = o5 — Topp™ (8) =
= A" (s) F (0" (n) = 2ph + 2phb” (n)) + V" (n) (g + 2k (n = 5)) (¥ (s) = V' (n))]

(18)

WhereA:m <0and F=a+g(n—s)+h(n—s)°>0.

The second expression in brackets of the numerator of (17) can be expressed,
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using (14), (15) and (16) as follows:

Tap +Tppp” (5) = A [b” (n) (9 +2h(n =) F + (g +2h(n - ) (V' (s) = (n)

(19)

Now, considering (5), (11), (13), (18), (19) and the assumption " > 0, (17)

reduces to:

" (s) = (W—AQ b (n) F + (g4 2h (n— 5)) (¥ (s) = ¥/ (n)))”

(20)

The right hand side of (20) is strictly positive, since A < 0. Thus, p*’ (s) > 0,
as desired.

The second part of the lemma is trivial since e (€,p) = €, for all p € [0, 1].

Finally, if max.~o {b(e) — F (e)} > b(0) =0, then s = 0 cannot be enforced
with any p € [0,1]. Therefore, by (16) and the fact that p© (€) = 0, there exists
s € (0,€) such that p°(5) = 1. m

Proof of Proposition 3.

To show the first part, we solve (10) constrained to the subset of policies
that induce compliance:

max {b(e) —d(e) — cp}

s,p

s.t. b(s)>m(s,p) (21)

The optimal response of the firm in this case is e (s,p) = s, i.e., to comply
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with the standard. Thus, an equivalent formulation for (21) is:

max {b(s) —d(s) — cp}

5,p

s.t. p > p°(s) (22)

At the optimum, the restriction is binding, since it is enough to set the
minimum necessary probability level to enforce a given standard, which is the

cheapest one. Thus, problem (22) can be further reduced to:

max {b(s) — d(s) — cp® (s)} (23)

The maximand in (23) is strictly concave, by the assumptions of the model
and Lemma 2. Thus, the first order condition in (23) characterizes the interior

optimum in the compliance region:

b (s7) —d'(s) = ep” (s7) (24)

By Lemma 2, we know that p (s) < 0. Therefore, we have b’ (s*) —d' (s*) <
0, which implies s* > €% and, therefore, p* < p° (e®).!0

To show the second part, we now solve (10) constrained to the subset of
policies that induce noncompliance:

max b(e)—d(e) —cp
5,p

s.t. e=n((s,p); $s>0 (25)

16Since we assume that p© (e*) exists, we then have that the solution to (24) is p* < 1. The
only possibility for a corner solution is when d’ (€) + cp® (€) > 0, which leads to s* = € and
p* =0.
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Now, the Kuhn-Tucker optimality conditions imply the following:'”

(¥ (e) —d'(e))np(s,p) = ¢ (26)

(¥ (e) —d'(e)) ns (s, p)

IN
jan)
—
[\}
3
~—

Since ny, (s,p) < 0, an interior solution implies that ¥’ (e) — d’ (e) < 0.

If sanctions are strictly convex in the degree of violation, ng (s,p) > 0 and
(27) is strictly negative. Consequently, we obtain s* = 0. And, since b’ (e) —
d' (e) < 0, we have e (0,p*) > e* and p* < p™ (eV), as desired.

If sanctions are linear, ns (s,p) = 0 and (27) is satisfied with equality. Also,
in the linear case we have that ng, (s,p) = 0. Therefore, (26) does not depend
on s. In consequence, the optimal policy is given by p* such that (26) holds and
any standard that implies noncompliance, that is, s* € [0,5) where 3 is such
that p* = p©(5).1* m

Proof of Lemma 4.

(¢) If @ = 0, the maximand in (2) is continuous at s. Since it is also strictly
concave, it has a unique maximum and the threshold probability between the
compliance and noncompliance decisions is given by p° (e) = ﬂgﬂ. On the other
hand, the optimal noncompliance decision when s = 0 is given implicitly by
b (e) = p(g+ 2he) and, therefore, p™ (e) = gl%e,}e. When sanctions are linear,
we have h = 0 and, consequently, p® (e) = p™ (e) for all e. However, if sanctions
are strictly convex (i.e., when h > 0), we have g < g + 2he and p° (e) > p" (e),

forall0<e<e.

1"These conditions are necessary and sufficient for characterizing the optimum, since
npp (s,0) > 0 and ngs (s,p) > 0, given b/ > 0. Again, p < 1 is guaranteed since we as-
sume that p™ (e¥) exists.

181n this case, we would have a corner solution when d’ (€) np (s,p) +c¢ > 0, and the optimal
policy would be such that s* € [0,€) and p* = 0.
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(1) If @ > 0, the maximand in (2) is discontinuous at s and p° (e) is given im-

plicitly by (8). Given {s, p}, an increase in a decreases 7 (s, p) while b (s) remains

constant. Therefore, p® (e) decreases when a increases. However, p™ (e) = gli(;,ie
does not depend on a. Consequently, if h =0, a > 0 implies that p© (e) < p™ (e)
for all e < e.

When sanctions are strictly convex, an increase in a implies that p© (e) de-
creases while p" (e) remains the same. Since at a = 0, p©(e) > p™ (e), there
exists a > 0 such that p© (e) > p™ (e) for all a < a. At a = a, we claim that both
p©(e) and p™ (e) intersect at a point other than (€,0), where p = 1. Let (,1)

be a point of intersection between p°(e) and p™ (e), which is characterized by

the following conditions:

b(e) =b(n(e,p)) —pF(n(ep) —e) (28)
V' (n(e,p)) =pF' (n(e,p) —e) (29)
b (2) =pF' (2) (30)

where (28) implicitly defines p° (€), as in (8); (29) characterizes the interior
optimal noncompliance decision when the standard is €, that is, n (€, p); and,
finally, (30) characterizes the interior optimal noncompliance decision when the
standard is 0, i.e., n (0, p).

At (e,p), considering (11), (13), (16) and (29), the slope of p© (e) is as follows:

P (e) = - — (31)

By (28) and (29), £=2 ~ F’(n —€). Also, since ny < 1, n(¢,p) —¢ < e.

n—e
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Since F" < nF_/ -, we then have F;(:if) > FlE(E). Considering this and also the

fact that " > 0, we then have:

(32)

Now, consider (30), which characterizes p™ (e) at €. Differentiating (30), the

slope of p" (e) at € is the following;:

= U (€) —PF” (2)
p" (€)= F’—(‘e)

Considering v > 0 and F"” = 0, (33) can be reduced to the following;:

o V(@2 —n(ep) +V" (n(ep)) (n(eD) —7)

2 ? ? ) 4
res (e —n@p) F (@) oy
To prove that p (€) > p™ (€) and, therefore, that the two functions cross

only once, it is sufficient to have:

V@4V (o) el <Y @) e (3
by (32) and (34).
Observe that (35) holds since b (€)€ < b (n (€,p))n (¢,p) and € > n —€.
Since p° (e) decreases when a increases while p™ (e) remains the same, there
exists a range of values, a € [a,@), for which the functions p©(e) and p™ (e)
continue to cross once at a point other than (€,0). Finally, for all a > @, we

have that p©(e) < p™ (e) for all e < €. m
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Proof of Lemma 5.
Given h > 0, a € [a,a] implies that there exists a point of intersection be-

tween p° (e) and p™ (e) other than (¢€,0), namely (e,p). We also have ns (€,p) =

2hp

—57—37; > 0 when p > 0. An increase in the level of the sanction means that

either g, h or both increase, which means that n (€,p) does not decrease. Also,
both n (e, p) and n (0,p) decrease, by (5). But the decrease of n (0,7) is at least
as great as the decrease of n (e, p), since ng (€,P) is nondecreasing in the level
of the sanction. Also, n (€,p) — € decreases. As a result, both p© (e) and p™ (e)
decrease, but the variation of p" (e) at € is at least as larger as the variation
of p° (e) at € Using Lemma 4, this implies that the new point of intersection

entails a smaller standard and a larger probability of inspection, as desired. m
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Figure 1: The optimal noncompliance decision exists

Figure 2: The optimal noncompliance decision does not exist
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Figure 6: The optimal policy inducement dependant on the structure of the fine
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