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Renewable Resources 
A. Xepapadeas 
 
1. Introduction 
 
This is an introduction to some basic concepts in the analysis of biological resources, 
with special focus on fisheries management. 
 
2. Biological Resources 
 
1. Definitions 

• A resource is renewable if its stock can be replenished. 

• A biological resource, also called an interactive resource, is a class of renewable 
resources for which the size of the resource stock, (resource population, resource 
biomass) is determined jointly by biological considerations and by actions taken 
by the society.  

• In biological resources the size of the population now determines the availability 
of the resource in the future. Thus, biological factors and human actions jointly 
determine resource flow. 

• Management problem: What is the optimal use of the resource across time and 
generations? 

Two dimensions are relevant in the management of biological resources: 

♦ The biological dimension 

♦ The economic dimension 

2. The biological dimension 
A central concept in the analysis of the biological dimension for management 
purposes is the rate of growth of the resource biomass (population). 

Let x(t) be a variable that depends on time t. The rate of growth of x is defined as: 

x
x

x
dtdxrx
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/  

In exponential population growth we have: ( ) rt
x extxorrr 0, == . The rate of growth 

is constant. Environmental limitations could, however, cause growth to decline as a 
function of population. This implies that the rate of growth is defined as: 
( ) ( ) 0'with <xrxr  which is the case of compensation. One of most commonly used 

formulations for the compensation case is the logistic equation for which 

( ) 

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

 −=

K
xrxr 1 , and the rate of change of the biomass per unit time is defined as: 
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for which r is intrinsic rate of growth, and k is environmental carrying capacity. 
Population is in equilibrium when 0=x& . The logistic growth has two equilibria: 
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0=x  which is unstable and kx =  which is stable (see figure 2.1). The evolution of 
the population is determined by the solution of the differential equation (1) as (see 
figure 2.2): 
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The maximum rate of change for the biomass is defined at the population level that 
maximizes F(x), or ( )xFx

x
maxarg* = . This value is determined by:  

( )
2

020' * kx
k
rxrorxF =⇒=−=  

3. Population growth under constant harvesting 
We assume that a constant amount h of the biomass is harvested per unit time. Then 
the change of the population per unit time is determined as: 

( ) h
k
xrxhxF

dt
dp

−
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
 −=−= 1  

When ( ) MSYhxFh == max , we have harvesting at the maximum sustainable yield 
(MSY). If MSYhh <  then we have two equilibria, ( ) 0:, 21 =xxx & , with 21 xx < shown 
in figure 2.3a. The lower equilibrium is unstable and the higher one is stable. If 

MSYhh >  then the population declines to zero, we have extinction of the species and x 
= 0 is a stable equilibrium (figure 2.3b). If MSYhh = , then there is only one semi-
stable equilibrium (figure 2.3c). 

4. Fishing effort and production functions 
Let: 

• h: catch rate or yield (tons/day)  

• t: time (days) 

• E: effort measured in standardized vessels 

• x: fish biomass (stock) in tons 

The harvesting or catch is defined though a harvesting production function 

( ) ( ) ( )( )txtEfth ,=  

Assume that: 

i. Catch per unit effort 







E
h is proportional to fish density 

ii. The density of the fish is proportional to the fish abundance, biomass.  

Then the harvesting function can be specified as: 

( ) ( ) ( )txtqEth =  

where q is the catchability coefficient. A more general production function can be 
written as: βα xqEh = . 
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Sustained yield function 

Sustained yield is an equilibrium concept where h,E,x are constant. 

Let ( ) ( ) hxFxqExh
k
xrxxF −==





 −= &,,1 . In equilibrium ( ) hxF = , or 
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is defined as: 
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Sustained harvesting is shown in figure 2.4a for different effort levels. The inverse 
relationship between effort and biomass is shown in figure 2.4b. The sustained yield 
function (2) is shown in figure 2.5. The effort corresponding to MSY is obtained by 

the solution of the maximization problem 





 −=

r
qEqEkh

E

e

E
1maxmax  which yields, 

after taking the first derivative and equating with zero: 

q
rEMSY 2

=     (3) 

Then by substituting into (2) 

4
krhMSY =     (4) 

The MSYx  is defined as the solution with respect to x of xqE
k
xrx MSY=





 −1  or 

2
kxMSY =     (5) 

Major problems with the concept of the MSY as an operational harvesting rule are: 

• MSY is unstable (semi-stable) 

• Natural fluctuations may lead to resource depletion 

• Ignores social and economic considerations of renewable resource management 

• Ignores “non market” preservation or existence values. 

When the resource growth function is characterized by depensation (figure 2.6a), then 
excess-harvesting leads to extinction and the system exhibits hysteretic effects (figure 
2.6b). 
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3. Static Economic Models of Fisheries 
 
1. Open access fisheries 

In open access or common property fisheries exploitation of the resource is 
unregulated. Therefore everyone can potentially harvest the resource. 

Equilibrium fishery (Gordon-Schaefer) 

Let p be the price per unit of harvested biomass. Fishermen are price takers, that is,  
they take price p as given. Revenue from harvesting is defined as: 

qExhpqExphR === ,  

with 





 −=

k
xrxx 1&  and sustainable yield function 






 −=

r
qEqEkh 1 . 

Assume fixed cost per unit effort c. Then total costs are defined as 
cETC =  

In open access rents are dissipated or R = TC, or cEph = . Then the following 
equilibrium values are defined:  

mequilibriu bionomic
pq
cxcEpqEx =⇒= ∞  
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Bionomic equilibrium is shown in figure 3.1. 

2. Regulated fisheries 
Suppose a regulatory agency owns the fishery. The objective is to maximize 
economic profit, by choosing the optimal (profit maximizing effort). The problem is: 
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cE
r

qEpqEk

orcEEph
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The optimality (first order) condition is: ( ) cEph =' . So in profit maximizing 
equilibrium the slope of the sustainable yield function equals the cost per unit of 
effort. Using this condition the equilibrium values for E, h, and x are defined as: 

( )
kpq

cpqkrE
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

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In equilibrium ( ) hxF = , thus equilibrium biomass under regulation is determined by 
the solution with respect to x of: 

*1 qxE
k
xrx =





 −  

As shown in figure 3.1, equilibrium effort and harvesting is less and equilibrium 
biomass more in profit maximizing equilibrium as compared to the open access 
equilibrium. 

3. Supply curve for an open access fishery 
Equilibrium effort and biomass in an open-access fishery is defined as: 

pq
cx

pqk
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The function ( )pSh =∞  is a supply function for an equilibrium open access fishery. 
The supply function has the following characteristics: 

• 0=∞h  if 
qk
cp <  

• ( )pS  is increasing in p, for 
qk

cp
qk
c 2

<≤  

• MSYhh =∞  if 
qk

cp 2
=  

• ( )pS  is decreasing in p, for 
qk

cp 2
>  

The shape of the supply function and the market equilibrium is shown in figure 3.2. 
According to this model, small harvesting, h, and high price, p is an indication of over 
fishing. Figure 3.3 shows the possibility of bionomic instability. 
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4. Dynamic Economic Models of Fisheries 
 
1. The dynamic problem 

The models described above are equilibrium fishery models since it is explicitly 
assumed that the fish population is in equilibrium. This is not, however, the case in 
most situations, so there is a need to take into account resource dynamics. 

Let cETCqExh ==   and . The net revenues when the effort over a time interval ∆t is 
Eδt, is defined as ( ) tEcqxNR ∆−= . When the objective is to maximize the present 
value of net revenue over an infinite time horizon, the objective function is defined as: 

( )∫
∞

− −=
0

EdtcqxePV it  

or for a more general net revenue function ( )ExR ,  

( )∫
∞

−=
0

, dtExRePV it  

where i  is the rate of interest indicating continuous discounting. 

Definitions for future and present values 

The future value of an amount V compounded for n periods at a rate of interest ρ is 
defined as: 

( )nVFV ρ+= 1  

Conversely the present value of an amount V received n periods from now is: 

( )n
VPV
ρ+

=
1

 

The present value of a cash flow tR  from t = 0 to t =T is defined as: 

( )∑
= +

=
T

t
t

tRPV
1 1 ρ

 

It is possible that ∞→t . 

When the time is continuous the present value is defined as: 

( )∫
∞

−=
0

dttRePV it  

2. Dynamic fishery management 
In a dynamic context the fishery management problem can be written as: 

( ){ }
( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) 00,,
tosubject

,max

0

0

>=−=

∫
∞

−

xxtEtxhtxFtx

dttEtxRe it

tE

&

  (6) 
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This is an infinite horizon optimal control problem. The solutions for this type of 
problem are presented in chapter 7.  

For the fishery problem, the optimal control problem (6) can be further specified by 

considering the revenue function, qExhcEph =− , . Writing 
qx
hE = , the control 

problem can be written as: 

( ){ }

( ) ( ) max0

0

0,00,
tosubject

max

hhxxhxFx

dt
qx
chphe it

tE

≤≤>=−=
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∞
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  (7) 

The current value Hamiltonian for this problem is defined as: 

( ) ( )[ ]

( )xFh
qx
cp

hxF
qx
chphhxH

λλ

λλ

+







−−=

−+−=,,
   (8) 

The necessary conditions for optimality require that h maximizes the Hamiltonian 
function for every t, or: 

( )
( )

( )









−<
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qx
cptifh

qx
cptif

th
λ
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0
    (9) 

and 

( )[ ] 2'
qx
chxFi

x
Hi −+=
∂
∂

−= λλλ&    (10) 

For  

( )
qx
cpt −=λ       (11) 

we have by taking the derivative with respect to time: 

( )( )hxF
qx
cx

qx
c

−== 22 &&λ     (12) 

Substituting λ from (11) into (10) we have: 

( )[ ] 2'
qx
ch

qx
cpxFi −







−+=λ&    (13) 

Equating (12) and (13) we obtain: 

( ) ( )
( ) i

cpqxx
xcFxF =
−

+'     (14) 
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Condition (14) determines the optimal equilibrium biomass x*. If we use the logistic 

growth equation ( ) 





 −=

k
xxrxF 1 , then x* is defined as: 
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where 
pq
cx =∞  is the bionomic equilibrium. It holds that ∞< xx* . Optimal 

harvesting is defined as: 

( )
( )

( )

( ) ( )












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
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k
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xtxif

th
*

*****

*
max

*

1

0
 (16) 

The optimal harvesting rule follows the most rapid approach path (figure 4.1). When 
the observed biomass is above the optimal equilibrium level, then harvesting is at the 
technical maximum. When the observed biomass is below the optimal equilibrium 
level, then harvesting is at zero. If the observed biomass is at the optimal equilibrium 
level, then harvesting is determined at the level that keeps the population in 

equilibrium or 







−=

k
xrxh

*
** 1 . 
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5. Optimal Investment in Dynamic Models of Fisheries and Game 
Theoretic Concepts 
 
1. Dynamic Investment Strategy 

In the model of the previous unit effort was defined as a one-dimensional index of 
economic inputs in harvesting. It is more realistic however to assume that the variable 
input “effort” is combined with physical capital, like vessels, which determines 
fishing capacity. Capital accumulates through non-reversible investment and 
depreciates at a constant rate.  

Let K(t) denote capital stock or equivalently capacity in fishing, I(t) gross investment 
in fishing capacity, and δ the depreciation rate. Then the accumulation of fishing 
capacity is defined as: 

( ) ( ) ( ) ( ) 00, 0 >=−= KKtKtItK δ&  

If cf is the cost per unit of gross investment, then the optimal control problem that 
corresponds to (7) is defined as: 

( ){ }
( )[ ]

( ) ( )
( ) ( )

KIK
tKtE

xxhxFx

dtIcEcpqxe f
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∞
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0
00,

tosubject

max

0

0

  (17) 

  

A graphical solution to this problem is shown in figure  5.1 for two possible initial 
biomass values '

00 , xx . 

The optimal path has the following characteristics: 

1. Starting from x0 capacity is built up to ( )0xK  

2. Harvesting takes place at full capacity following a MRAP to drive biomass down 
to *

1x . Capital depreciates at a rate δ. 

3. Stock is low, capacity is excessive and fishing effort is below full capacity, or 
( )[ ]*

1
* xtKE < . 

4. Capacity is fully used, but is still going down. The stock starts recovering. 

5. Stock reaches equilibrium at *
2x . Additional investment is undertaken to increase 

capacity to *
2K . 

6. Long run equilibrium: *
2

*
2

*
2

*
2 ,,, KIKExxKK δ====   
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2. Tragedy of the Commons 
We show that for a common property resource, like for example an open access 
fishery, noncooperative exploitation can lead to the depletion of the resource (tragedy 
of the commons). 

Consider the open access fishery with:  

cETCqExhphTR === ,,  

Open access implies that exploitation takes place up to the point where rents dissipate 

or TRTC = . Then bionomic equilibrium is obtained as
pq
cx =∞ . 

Consider the following payoff matrix of the noncooperative game regarding the 
exploitation of the resource. 

Exploiter A  

Conserve Deplete 

Conserve (3,3) (1,4) Exploiter B 

Deplete (4,1) (2,2) 

 

The above game corresponds to the prisoners’ dilemma. The dominant strategy is 
(Deplete, Deplete) and although both exploiters would have been better off by 
cooperation [that is, following (Conserve, Conserve)], by the nature of the non-
cooperative game they deplete the common property resource. 

The (Conserve, Conserve) outcome can be obtained only as a trigger strategy 
equilibrium in the context of a dynamic game. 
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6. Policy Issues 
 
1. Principles of resource regulation 

In common property resources the basic externality is the “stock externality”. The 
individual exploiters ignore the effects that their action might have  on the stock of the 
resource and the future productivity of the stock. 

Let there be  ni ,...,1= exploiters with harvesting functions: 

( ) 0,0,0,, 2

2

<
∂
∂

>
∂
∂

<
∂
∂

=
ii

ii EEx
xEh φφφφ  

and cost functions ( ) 0'',0', >> iiii ccEc . Assume that the resource price is 
exogenous at the level p. Then the individual exploiter solves the problem: 

( ) ( )iiiE
EcxEp

i

−
≥

,max
0

φ   (18) 

with optimality condition: 

( ) 0,' iiii
i

EEforEc
E

p ==
∂
∂φ    (19) 

Condition (19) characterizes resource exploitation at the private optimum, with 
privately-optimal effort  at the level Ei

0 . 

Assume that the resource is managed either cooperatively or by a social planner. The 
objective is the maximization of the net present value of profits subject to the 
constraint imposed by the growth of the resources biomass. Thus the cooperative or 
social optimum can be obtained as the solution of the following problem: 

( ) ( ){ }
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( ) ( )∑

∫ ∑
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∞
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−=

−

n

i
i

n

i
iii

it

tEtE
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φ
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 (20) 

The current value Hamiltonian for this problem is defined as: 

 

( ) ( ) ( )[ ]
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with optimality conditions 

( ) ( ) *,' iiii
i

EEforEc
E

p ==
∂
∂

−
φλ     (22) 

Condition (22) characterizes resource exploitation at the social or cooperative 
optimum, with socially-optimal effort  at the level *

iE . 
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Since λ > 0, because it is the shadow value of the resource, it can be seen by 
comparing  (19) with (22) that ,*0

ii EE > for all i. Therefore excess effort is 
exercised at the private optimum relative to the social optimum and the resource is 
overexploited. 

Instrument for resource regulation 

The deviation in the exploitation of the resource under the private and the social 
optimums implies that there is a need for economic policy so that private profit- 
maximizing exploiters will be induced to behave according to the cooperative or 
social optimum, by reducing their effort. The following instruments can be used to 
regulate the private producers which exploit the resource. 

i. Taxes on resource harvest 

Let there be a tax τ per unit harvest. The individual exploiter pays this tax per unit 
harvest of the resource. Thus the private exploiter solves the problem: 

 

( ) ( ) ( )xEEcxEp iiiiEi

,,max
0

τφφ −−
≥

   (23) 

with optimality condition 

( ) ( ) 0,' iiii
i

EEforEc
E

p ==
∂
∂

−
φτ    (24) 

If we set λτ = , then it is clear by comparing (22) or (24) that *0
ιι EE = .   

Therefore a regulator can obtain the socially-optimal effort and resource harvesting by 
imposing a tax on harvesting equal to the shadow value of the exploited resource. The 
intuition behind the result is clear. At the private optimum the resource is over-
exploited because its shadow value is not taken into account. Therefore by 
introducing this shadow value in the form of the tax, the social optimum can be 
achieved. 

Taxes on harvesting are not common in practice. Methods that have been used in 
practice to reduce effort are: 

ii. Reduction of the harvesting season 

Shortening the harvesting season can reduce annual effort. This measure can create 
excess capacity as exploiters try to maximize harvest over a short time interval and 
require more capacity to do so. 

iii. Limits on harvesting 

Each individual exploiter can not harvest more than a certain amount h . The 
exploiter solves the problem 

( ) ( )

hxEts

EcxEp

i

iiiEi

≤

−
≥

),(..

,max
0

φ

φ
    (25) 

with optimality condition: 
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where z is the Lagrangean multiplier associated with the constraint of problem (25). If  
the harvesting limit is set such that ( )xEh i ,*φ= , then the social optimum can be 
achieved. The use of harvesting limits requires an extensive monitoring system. 

iv. Tradable catch quotas  

Each exploiter (fisherman) is allocated a catch quota. Quotas can be traded. If one 
fisherman wants to catch more than his quota, he should buy more quotas from 
fishermen willing to sell. To achieve the social optimum the total amount of quotas 

should be set at the level ( )∑
=

n

i
i xE

1

* ,φ . In this case the equilibrium quota price tends to 

λ, the shadow value of the resource, and equilibrium is achieved. 

2. Specialization in mechanistic resource-based models of species competition 
(Tilman) 

Specialization at the private optimum 

Let ( ) nitBi ,...1, =  denote the biomasses of  n species at each point in time. The 
species are competing for a single limiting resource R. The rate of growth for each 
species i is defined as: 

( ) ii
i

i dRg
B
B

−=
&

    (27) 

with 0'',0' <> ii gg , and dI the natural mortality rate for species i. The limiting 
resource evolves according to  

( )∑
=

−=
n

i
iii BRgwSR

1

&     (28) 

where S is the constant resources supply per unit time, and wi is the concentration of 
the resource in the tissues of species i. 

Let hi be harvesting of species i  by a profit-maximizing exploiter and let iii cPp −=  
be the net profit per unit harvest. In equilibrium iRBi ∀== 0&& , and the profit-
maximizing exploiter solves the following problem assuming zero discount rate: 
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By writing ( )[ ]iiii dRgBh −= , the problem can be restated as: 
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( )[ ]
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..
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   (30) 

The Lagrangean function for this problem is defined as: 
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( )[ ] ( ) 





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i
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i
iiii BRgwSdRgBpL
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with optimality conditions: 

( )[ ]
( )[ ] 0 then
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 (32) 

( ) [ ] 0,0'
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RwpBRg
n

i
iiii µ    (33) 

Assume: 

a. 








=
i

i

w
p

w
p maxarg

1

1  

b. ( ) ( ){ }ii dRgdRg −=− maxarg11  

From assumption (a), species one ( 1=i ) is a candidate for optimal specialization. The 
objective function with only one species ( 1=i ) harvested becomes 

( )[ ]11111 dRgBp −=π  

Substituting for B1 from ( ) 111 BRgwS =  , the profit function becomes: 

( ) ( )[ ]11
11

1
1 dRg

Rg
S

w
p

−=π  

Under assumptions (a) and (b), { }iππ maxarg1 = . Therefore at the private optimum, 
specialization in species one takes place and the system tends into a monoculture. 

Social optimum and preservation of biodiversity 

It has been well established that monocultures create negative externalities. These 
externalities are not taken into account at the private optimum. Assume that these 
externalities can be captured by the function ( ) ( )nBBU ,...,, 1=BB , with the 
following properties: 
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These properties imply that all species are useful and that when a species is close to 
extinction, its marginal usefulness becomes very large. The problem for the social 
planner becomes: 
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with optimality conditions:  
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Since +∞=
∂
∂

→
i

B B
U

01

lim , Bi = 0 can not be a solution of  (34). Therefore at the solution ,  

Bi > 0,  and all species are preserved at the social optimum. 

Environmental policy 

Since there is a deviation between the private and the social optimums, environmental 
policy can be introduced in order to induce the private markets not to create a 
monoculture but to achieve the social optimum and preserve biodiversity. 

Introduce biomass and resource taxes per unit deviation between observed biomass, 

iB , and desired biomass, *
iB , and observed resource level, R, and desired resource 

level, R*. Total tax payments are: 

( ) ( )** RRBB ii −+− ττ  

The profit-maximizing explorer solves: 
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  (36) 

If the tax is set such that 
iB

U
∂
∂

=τ  , it is clear by comparing the optimality conditions 

of problem (33) with those implied by problem (36) that the private optimum under 
taxes coincides with the social optimum. Therefore environmental policy in this form 
can preserve the socially optimal biodiversity. 
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