Renewable Resources
A. Xepapadeas

1. Introduction

This is an introduction to some basic concepts in the analysis of biological resources,
with special focus on fisheries management.

2. Biological Resources

1. Definitions
e A resource is renewable if its stock can be replenished.

e A biological resource, also called an interactive resource, is a class of renewable
resources for which the size of the resource stock, (resource population, resource
biomass) is determined jointly by biological considerations and by actions taken
by the society.

e In biological resources the size of the population now determines the availability
of the resource in the future. Thus, biological factors and human actions jointly
determine resource flow.

e Management problem: What is the optimal use of the resource across time and
generations?

Two dimensions are relevant in the management of biological resources:
¢ The biological dimension

¢ The economic dimension

2. The biological dimension

A central concept in the analysis of the biological dimension for management
purposes is the rate of growth of the resource biomass (population).

Let x(¢) be a variable that depends on time z. The rate of growth of x is defined as:
dx/dt X

X
X

X

X

In exponential population growth we have: r. =r, or x(t) = x,e" . The rate of growth

is constant. Environmental limitations could, however, cause growth to decline as a
function of population. This implies that the rate of growth is defined as:
r(x) with #'(x) <0 which is the case of compensation. One of most commonly used

formulations for the compensation case is the logistic equation for which

r(x) = r(l - %) , and the rate of change of the biomass per unit time is defined as:

%:,‘C:rx(l—%sz(x) (1)

for which r is intrinsic rate of growth, and & is environmental carrying capacity.
Population is in equilibrium when x =0. The logistic growth has two equilibria:
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x =0 which is unstable and x = k which is stable (see figure 2.1). The evolution of
the population is determined by the solution of the differential equation (1) as (see
figure 2.2):

.k k—x,
l+ce™’ X,

x(t)

The maximum rate of change for the biomass is defined at the population level that
maximizes F(x), or x =argmax F (x) This value is determined by:

X

F'(x)=0 or r—2kﬂ=O:>x* _k

3. Population growth under constant harvesting

We assume that a constant amount / of the biomass is harvested per unit time. Then
the change of the population per unit time is determined as:

d—p:F(x)—h:rx(l—ﬁj—h
dt k

When /4 =max F (x): h,y , we have harvesting at the maximum sustainable yield
(MSY). If h < h,,, then we have two equilibria, (x,,x,): % =0, with x, < x, shown

in figure 2.3a. The lower equilibrium is unstable and the higher one is stable. If
h > h,, then the population declines to zero, we have extinction of the species and x

= 0 is a stable equilibrium (figure 2.3b). If & =h,, , then there is only one semi-
stable equilibrium (figure 2.3c).

4. Fishing effort and production functions

Let:

e /i catch rate or yield (tons/day)

e ¢ time (days)

e FE: effort measured in standardized vessels

e x: fish biomass (stock) in tons

The harvesting or catch is defined though a harvesting production function
h(t)= f(E(). x(¢))

Assume that:

1. Catch per unit effort (%) is proportional to fish density

il. The density of the fish is proportional to the fish abundance, biomass.

Then the harvesting function can be specified as:

h(r) = qE(1)x(r)

where ¢ is the catchability coefficient. A more general production function can be
written as: & = gE“x” .
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Sustained yield function

Sustained yield is an equilibrium concept where 4, E. x are constant.

Let F(x)= rx(l —%), h=gqEx,x=F(x)-h. In equilibrium F(x)=h, or

rx(l - %) =qEkx = x° = k(l - ﬂ) then /#° = gEx® and the sustained yield function
r

is defined as:

he = qu( —ﬂj 2)

r

Sustained harvesting is shown in figure 2.4a for different effort levels. The inverse
relationship between effort and biomass is shown in figure 2.4b. The sustained yield
function (2) is shown in figure 2.5. The effort corresponding to MSY is obtained by

the solution of the maximization problem max ht = max qu(l —ﬂj which yields,
r

after taking the first derivative and equating with zero:

r

E . =_— 3
MSY 2q ( )
Then by substituting into (2)
kr
Pysy = ? 4)

The x,, is defined as the solution with respect to x of rx(l - %j =qE,x or

k
Xusy = B )

Major problems with the concept of the MSY as an operational harvesting rule are:
e MSY is unstable (semi-stable)

e Natural fluctuations may lead to resource depletion

e Ignores social and economic considerations of renewable resource management
e Ignores “non market” preservation or existence values.

When the resource growth function is characterized by depensation (figure 2.6a), then

excess-harvesting leads to extinction and the system exhibits hysteretic effects (figure
2.6b).
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3. Static Economic Models of Fisheries

1. Open access fisheries

In open access or common property fisheries exploitation of the resource is
unregulated. Therefore everyone can potentially harvest the resource.

Equilibrium fishery (Gordon-Schaefer)

Let p be the price per unit of harvested biomass. Fishermen are price takers, that is,
they take price p as given. Revenue from harvesting is defined as:

R = ph = pgEx, h = gEx

r

with x = rx(l — %) and sustainable yield function 4 = qu( - Ej .

Assume fixed cost per unit effort c. Then total costs are defined as
TC =cE

In open access rents are dissipated or R = TC, or ph=cE. Then the following
equilibrium values are defined:

pgEx =cE = x” = - bionomic equilibrium
pq
ph =cE, or

pqu(l —ﬂj —cE=E” = 1(1 —LJ
r

q pak
B = gE*x :1[1_LJ
Pq pak

Bionomic equilibrium is shown in figure 3.1.
2. Regulated fisheries

Suppose a regulatory agency owns the fishery. The objective is to maximize
economic profit, by choosing the optimal (profit maximizing effort). The problem is:

max ph(E)—cE, or

max pqu(l - ﬂj —cE
E r

The optimality (first order) condition is: ph'(E )= c¢. So in profit maximizing

equilibrium the slope of the sustainable yield function equals the cost per unit of
effort. Using this condition the equilibrium values for E, 4, and x are defined as:

2
qu—qu kE =c, or
r
E* V(pCIk—C)

2
2pqk
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h = qu*( —ﬂJ
r

In equilibrium F (x) = h, thus equilibrium biomass under regulation is determined by

X .
1-—|=¢gxE
rx( k) qx

As shown in figure 3.1, equilibrium effort and harvesting is less and equilibrium
biomass more in profit maximizing equilibrium as compared to the open access
equilibrium.

the solution with respect to x of:

3. Supply curve for an open access fishery

Equilibrium effort and biomass in an open-access fishery is defined as:

o :i(l_L} o€
q pak P4

Then

h” =qE*x” :E(I—LJ:S(]))
P4 Pk

The function 42~ = S(p) is a supply function for an equilibrium open access fishery.
The supply function has the following characteristics:

o h* =0 if p<-—

gk
.. .. c 2¢
° S(p) is increasing in p, for — < p < —
gk gk
®h” =h,, 1fp=£
gk

. .. 2
o S(p) is decreasing in p, for p > _lcc
q

The shape of the supply function and the market equilibrium is shown in figure 3.2.
According to this model, small harvesting, 4, and high price, p is an indication of over
fishing. Figure 3.3 shows the possibility of bionomic instability.
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4. Dynamic Economic Models of Fisheries

1. The dynamic problem

The models described above are equilibrium fishery models since it is explicitly
assumed that the fish population is in equilibrium. This is not, however, the case in
most situations, so there is a need to take into account resource dynamics.

Let 4 = qEx and TC = cE . The net revenues when the effort over a time interval At is
Ebt, is defined as NR = (qx - c)EAt . When the objective is to maximize the present
value of net revenue over an infinite time horizon, the objective function is defined as:

PV = J.e’” (gx — c)Edt
0
or for a more general net revenue function R(x, E )
PV = [ e R(x, E)dt
0

where i is the rate of interest indicating continuous discounting.
Definitions for future and present values

The future value of an amount ¥ compounded for » periods at a rate of interest p is
defined as:

FV =vV(+p)
Conversely the present value of an amount V' received 7 periods from now is:
_r
(1+p)

The present value of a cash flow R, from ¢ =0 to # =T is defined as:

PV =

T
PV = R -
= (1+p)
It is possible that ¢ — .

When the time is continuous the present value is defined as:
PV = [ e R(¢)dt
0

2. Dynamic fishery management

In a dynamic context the fishery management problem can be written as:

['e]

max I e R(x(¢), E(¢))dt

0

subject to (6)

#(t) = F(x() = h(x(e). E()), x(0)=x, >0
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This is an infinite horizon optimal control problem. The solutions for this type of
problem are presented in chapter 7.

For the fishery problem, the optimal control problem (6) can be further specified by

considering the revenue function, ph—cE,h =qgEx. Writing E =£, the control
qx
problem can be written as:

maXJ.e_” ph—ﬂ t
{E()) gx

0

subject to (7)
x=F(x)=h, x(0)=x,>0,0<h<h_

The current value Hamiltonian for this problem is defined as:

H(x,h,A) = ph —;—’;+ A[F(x)- h]

:(p_q_cx—zthF(x)

(®)

The necessary conditions for optimality require that 72 maximizes the Hamiltonian
function for every ¢, or:

0if Alt)>p-—=
h(r)= “ ©)
qx
and
G- (- (10)
Ox gx
For
At)=p-= (11)
qx
we have by taking the derivative with respect to time:
A=—i="_(F(x)-h) (12)
qx qx

Substituting 4 from (11) into (10) we have:
z:[”Fv(x)](p_i]—c—’i (13)
Equating (12) and (13) we obtain:
cF (x)

F'(x)+—H =i (14)
x(pgx —c)
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Condition (14) determines the optimal equilibrium biomass x". If we use the logistic

growth equation F(x)= xr(l - %j , then x” is defined as:

. . 2 .
K=t x°°+k(1—ij+\/(x°°+k(l—ijj + 8k L (15)
4 r r r

where x” =-" is the bionomic equilibrium. It holds that x <x®. Optimal
Pq

harvesting is defined as:

0if x(r)<x"
h(t) =3 by i () > " (16)

h = F(x*)if x(t)=x"or h" = rx*(l—%j

The optimal harvesting rule follows the most rapid approach path (figure 4.1). When
the observed biomass is above the optimal equilibrium level, then harvesting is at the
technical maximum. When the observed biomass is below the optimal equilibrium
level, then harvesting is at zero. If the observed biomass is at the optimal equilibrium
level, then harvesting is determined at the level that keeps the population in

equilibrium or 4" = rx*(l - %j .
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5. Optimal Investment in Dynamic Models of Fisheries and Game
Theoretic Concepts

1. Dynamic Investment Strategy

In the model of the previous unit effort was defined as a one-dimensional index of
economic inputs in harvesting. It is more realistic however to assume that the variable
input “effort” is combined with physical capital, like vessels, which determines
fishing capacity. Capital accumulates through non-reversible investment and
depreciates at a constant rate.

Let K(¢) denote capital stock or equivalently capacity in fishing, /(¢) gross investment
in fishing capacity, and ¢ the depreciation rate. Then the accumulation of fishing
capacity is defined as:

K(t)=1(t)-K(z), K(0)=K, >0

If ¢ is the cost per unit of gross investment, then the optimal control problem that
corresponds to (7) is defined as:

0

—it
1{1;(% I e (pqx - c)E - cfl]:lt

0
subject to

x=F(x)=h, x(0)=x,>0 (17)
0<E(t)<K(t)
K=1-6K

A graphical solution to this problem is shown in figure 5.1 for two possible initial
biomass values x,, X, .

The optimal path has the following characteristics:
1. Starting from x, capacity is built up to K (xo)

2. Harvesting takes place at full capacity following a MRAP to drive biomass down
to xl*. Capital depreciates at a rate 0.

3. Stock is low, capacity is excessive and fishing effort is below full capacity, or
E <[k
4. Capacity is fully used, but is still going down. The stock starts recovering.

5. Stock reaches equilibrium at x, . Additional investment is undertaken to increase
capacity to Kz*.

%

6. Long run equilibium: K =K, , x=x, , E=K, , [ =5K,
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2. Tragedy of the Commons

We show that for a common property resource, like for example an open access
fishery, noncooperative exploitation can lead to the depletion of the resource (tragedy
of the commons).

Consider the open access fishery with:
TR =ph, h=qEx, TC =cE
Open access implies that exploitation takes place up to the point where rents dissipate

or 7C = TR . Then bionomic equilibrium is obtained as x” = <.
Pq

Consider the following payoff matrix of the noncooperative game regarding the
exploitation of the resource.

Exploiter A
Conserve Deplete
Exploiter B Conserve (3,3) (1,4)
Deplete (4,1) (2,2)

The above game corresponds to the prisoners’ dilemma. The dominant strategy is
(Deplete, Deplete) and although both exploiters would have been better off by
cooperation [that is, following (Conserve, Conserve)], by the nature of the non-
cooperative game they deplete the common property resource.

The (Conserve, Conserve) outcome can be obtained only as a trigger strategy
equilibrium in the context of a dynamic game.
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6. Policy Issues

1. Principles of resource regulation

In common property resources the basic externality is the “stock externality”. The
individual exploiters ignore the effects that their action might have on the stock of the
resource and the future productivity of the stock.

Let there be i =1,...,n exploiters with harvesting functions:

)a¢<0 9 0 82"i<o

ho=¢(E,,x ,
' ¢(’ Ox OF,

and cost functions c,(E,), ¢,'>0,c,'">0. Assume that the resource price is
exogenous at the level p. Then the individual exploiter solves the problem:

max pg(E,,x)-c,(E,) (18)
with optimality condition:
21? ¢,'(E,), for E, = E/ (19)

Condition (19) characterizes resource exploitation at the private optimum, with
privately-optimal effort at the level E°.

Assume that the resource is managed either cooperatively or by a social planner. The
objective is the maximization of the net present value of profits subject to the
constraint imposed by the growth of the resources biomass. Thus the cooperative or
social optimum can be obtained as the solution of the following problem:

s J X lpglE x) e, (£

,...

(20)
st x=F(x Z¢ E,x)
The current value Hamiltonian for this problem is defined as
H(x,E,....E,. A)= Y [p4(E,.x) - c.,(E,)]+
g ) 21)
A F)-Sole5)
i=1
with optimality conditions
(p-2)S2 = (E), for £, =] 22)

OE,

Condition (22) characterizes resource exploitation at the social or cooperative
optimum, with socially-optimal effort at the level E l.* .
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Since 4 > 0, because it is the shadow value of the resource, it can be seen by
comparing (19) with (22) that EI.O >El.*, for all i. Therefore excess effort is

exercised at the private optimum relative to the social optimum and the resource is
overexploited.

Instrument for resource regulation

The deviation in the exploitation of the resource under the private and the social
optimums implies that there is a need for economic policy so that private profit-
maximizing exploiters will be induced to behave according to the cooperative or
social optimum, by reducing their effort. The following instruments can be used to
regulate the private producers which exploit the resource.

I Taxes on resource harvest

Let there be a tax 7 per unit harvest. The individual exploiter pays this tax per unit
harvest of the resource. Thus the private exploiter solves the problem:

maXp¢(wa)_ci(Ei)_T¢(wa) (23)

E>0

with optimality condition

(p_r)s_gizci'(Ei)a for E, :Eio (24)

If we set 7 = A, then it is clear by comparing (22) or (24) that E,O = E,*.

Therefore a regulator can obtain the socially-optimal effort and resource harvesting by
imposing a tax on harvesting equal to the shadow value of the exploited resource. The
intuition behind the result is clear. At the private optimum the resource is over-
exploited because its shadow value is not taken into account. Therefore by
introducing this shadow value in the form of the tax, the social optimum can be
achieved.

Taxes on harvesting are not common in practice. Methods that have been used in
practice to reduce effort are:

ii. Reduction of the harvesting season

Shortening the harvesting season can reduce annual effort. This measure can create
excess capacity as exploiters try to maximize harvest over a short time interval and
require more capacity to do so.

iii.  Limits on harvesting

Each individual exploiter can not harvest more than a certain amount 4. The
exploiter solves the problem

max p¢(El.,x)— c; (El)

E;20 B (25)
st g(E.,x)<h

with optimality condition:
(p- Z)%ﬁ =¢'(E,), for E,=E (26)
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where z is the Lagrangean multiplier associated with the constraint of problem (25). If
the harvesting limit is set such that 4 = ¢(Ei*,x), then the social optimum can be

achieved. The use of harvesting limits requires an extensive monitoring system.
iv. Tradable catch quotas

Each exploiter (fisherman) is allocated a catch quota. Quotas can be traded. If one
fisherman wants to catch more than his quota, he should buy more quotas from
fishermen willing to sell. To achieve the social optimum the total amount of quotas

should be set at the level z¢(E l.*, x). In this case the equilibrium quota price tends to
i=1
A, the shadow value of the resource, and equilibrium is achieved.

2. Specialization in mechanistic resource-based models of species competition
(Tilman)

Specialization at the private optimum

Let B.(f), i=1,..n denote the biomasses of n species at each point in time. The

species are competing for a single limiting resource R. The rate of growth for each
species i 1s defined as:

B,
El:gi(R)_di (27)

1

with g,'>0, g,'"'<0, and d; the natural mortality rate for species i. The limiting
resource evolves according to

R=S- iwigi (R)Bi (28)

where § is the constant resources supply per unit time, and w; is the concentration of
the resource in the tissues of species i.

Let 4; be harvesting of species i by a profit-maximizing exploiter and let p, = P, —¢,
be the net profit per unit harvest. In equilibrium B, =R =0 Vi, and the profit-
maximizing exploiter solves the following problem assuming zero discount rate:

n
max z h.
(7 sevrhty )20 P Pl

5.t. 0 :Bi[gi(R)_di]_hi (29)
0=5- anwigi(R)Bi
i=1
By writing 4, = B.[g, (R)— d.], the problem can be restated as:
(th%?()ZO Zl:piBi [gi(R)_di]
- (30)

s.t. iwl.gi (R)B, =S
i=1

The Lagrangean function for this problem is defined as:
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L= Zpl lg, d]—i-,u[S ngl Bl} (31)

i=1
with optimality conditions:
g.(R)p, - wow,]< p,d, with equality if B, > 0

g (R )[P ,UW,]< p,d, then B, =0 (32)

Zgl )B.[p, — tw.]=0, R>0 (33)

Assume:

a. b arg max{&}
w, w,

b. gl(R)_dl :argmax{gi(R)_di}

From assumption (a), species one (i = 1) is a candidate for optimal specialization. The
objective function with only one species (i = 1) harvested becomes

= piB[g(R)-d,]
Substituting for B; from S = w,g, (R )B, , the profit function becomes:

P S
T, :_—[gl(R)_dl]

W & (R)
Under assumptions (a) and (b), 7, = arg max{ } Therefore at the private optimum,
specialization in species one takes place and the system tends into a monoculture.

Social optimum and preservation of biodiversity

It has been well established that monocultures create negative externalities. These
externalities are not taken into account at the private optimum. Assume that these
externalities can be captured by the function U(B), B=(B,...,B,), with the

following properties:

2
a—U>o,aU 0, 1im Y — 1o

oB p 8B . B,—0 6B

1

These properties imply that all species are useful and that when a species is close to
extinction, its marginal usefulness becomes very large. The problem for the social
planner becomes:

hlrn'c}x ;plh +U
st.0=8] ,.(R)—d,.]—hi
0= S_anwigi(R)Bi

i=1

(33)

with optimality conditions:
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% + & (R)p, - 4w, ] < p,d, with equalityif B, >0

U (34)
if 8?+gi(R)[pi — 1w, ]< p,d, then B, =0

n

%+zgi'(R)Bi[pi_uWi]:0’R>o (35)

i=1

Since }ein% 27? =+, B; =0 can not be a solution of (34). Therefore at the solution ,

B;> 0, and all species are preserved at the social optimum.
Environmental policy

Since there is a deviation between the private and the social optimums, environmental
policy can be introduced in order to induce the private markets not to create a
monoculture but to achieve the social optimum and preserve biodiversity.

Introduce biomass and resource taxes per unit deviation between observed biomass,

B, , and desired biomass, B, , and observed resource level, R, and desired resource
sk

level, R . Total tax payments are:

(B~ B )+ r(R-R")
The profit-maximizing explorer solves:

5. 0 :Bi[gi(R)_di]_hi (36)

0=5- anwigi(R)Bi
i=1

If the tax is set such that 7 = ou , it is clear by comparing the optimality conditions
of problem (33) with those implied by problem (36) that the private optimum under
taxes coincides with the social optimum. Therefore environmental policy in this form
can preserve the socially optimal biodiversity.
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dx/dt

k
mMax F(x)
F(x)
> —_— «
k/2 k
Figure 2.1 Logistic growth
X
K
Time

Figure 2.2 Evolution under logistic growth
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dx/dt

mMax F(x)

F(X)

k/2 k

mMax F(x)

F(x)

(o) K
ax/dt

Max F(x
hMSY [ )

c /2 K

Figure 2.3: Constant harvesting
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dx/dt

(a)

qEx
qE.x
F (X) \
h,
h,
h,
X1 Xz X3

(b)

Figure 2.4: Sustained yield
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hMSY=

kr/4

E=1/2q 9

Figure 2.5: Sustained yield
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Figure 3.1: Bionomic equilibrium and profit maximizing equilibrium
p

h,, h

Figure 3.2: Supply curve and market equilibrium for an open access fishery
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Figure 3.3: Bionomic instability and market equilibrium for an open access fishery
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h=F(x)

h=0

Figure 4.1: Most rapid approach path

v



>
KO : K(x,)
—
2
* 3 A 1
K, 6
v 4 A
5 1
K,’ 4
\
K,
Xl * Xz * XO 5 X()

Figure 5.1: Optimal investment



