EJERCICIO 1 (24.3 Nicholson)

24.3 $A C=M C=1000 /$ well

a. \quad Produce where revenue/well $=1000=10 q=5000!10 N . N=400$. There is an externality here because drilling another well reduces output in all wells.
b. Produce where MVP = MC of well. Total value:

$$
5000 N!10 N^{2} . M V P=5000!20 N=1000 . N=200
$$

Let tax $=X$. Want revenue/well $!X=1000$ when $N=200$. At $N=200$, average revenue/well $=3000$.
charge $X=2000$.

Ejercicio 2 (8.8 Nicholson)
a. A high value for $1!R$ implies a low elasticity of substitution between states of the world. A very risk-averse individual is not willing to make trades away from the certainty line except at very favorable terms.
b. $\quad R=1$ implies the individual is risk-neutral. The elasticity of substitution between wealth in various states of the world is infinite. Indifference curves are linear with slopes of $!1$. If $R=!4$, the individual has an infinite relative riskaversion parameter. His or her indifference curves are L-shaped implying an unwillingness to trade away from the certainty line at any price.
c. A rise in P_{b} rotates the budget constraint counterclockwise about the W_{g} intercept. Both substitution and income effects cause W_{b} to fall. There is a substitution effect favoring an increase in W_{g} but an income effect favoring a decline. The substitution effect will be larger the larger is the elasticity of substitution between states (the smaller is the degree of risk-aversion).

EJERCICIO 3 (16.6 DE Nicholson)
16.6
a. $\quad P_{X} / P_{Y}=3 / 2$
b. If wage $=1$, each person's income is 10 . Smith spends 3 on $X, 7$ on Y. Jones spends 5 on $X, 5$ on Y.

Since $\frac{X}{2}+\frac{Y}{3}=20$, and demands are $X=\frac{8}{P_{X}}, Y=\frac{12}{P_{Y}}$
we have $\frac{8}{2 P_{X}}+\frac{12}{3 P_{Y}}=\frac{8}{2 P_{X}}+\frac{12}{2 P_{X}}=20$, or
$P_{X}=2, P_{Y}=$ a.

So Smith demands 6X, $21 Y$.

Jones demands 10X, 15 Y.
c. Production is $X=16, Y=36$.

20 hours of labor are allocated:
8 to X production, 12 to Y production.

