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Abstract

We present a simple example where the use of r-algebras as a model of information leads to a

paradoxical conclusion: a decisionmaker prefers less information to more. We then explain that the

problem arises because the use of r-algebras as the informational content of a signal is inadequate.

We provide a characterization of the different models of information in the literature in terms of

Blackwell’s theorem.
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1. Introduction

Algebras of events are closed under finite unions; r-algebras are closed under countable
unions. It is well-known that algebras are not rich enough for most purposes in probability

theory. It is slightly less known—but trivial—that they are not rich enough to model an

agents’ information.

Researchers in statistics, finance and economics use r-algebras to model an agents’

information because r-algebras allow the use of probability-theory tools. We point out

that, as a model of information, r-algebras are just as problematic as algebras.
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We present a simple example where the use of r-algebras as a model of information

leads to a paradoxical conclusion: a decisionmaker prefers less information to more. We

then explain why the problem arises, and provide a characterization of the different models

of information in the literature in terms of Blackwell’s theorem.

1.1. The example

Let the state of the world be a real number between 0 and 1, so the set of possible states

is X ¼ ½0; 1�. Suppose that a decisionmaker can choose to either be perfectly informed, so

that she gets to know the exact value of x, or only be told if the true x is smaller or larger

than 1/2. In the first case, the information can be modeled as the partition of all elements of

X; s ¼ ffxg : xaXg. In the second case, the information is the partition sV¼ f½0; 1=2Þ;
½1=2; 1�g:

(a) Suppose we were to model the informational content of s and sV by the algebras

generated by s and sV; denote these by AðsÞ and AðsVÞ. It is easy to see that AðsVÞ ¼ ft;
X; ½0; 1=2Þ; ½1=2; 1�g, while AðsÞ is the collection of sets in [0, 1] that are either finite or

have finite complement.

The first problem with algebras as a model of information is that AðsÞ is not finer than
AðsVÞ: a decisionmaker with information AðsVÞ may get to learn that the event [0, 1/2) has

happened; a decisionmaker with information AðsÞ never learns if [0, 1/2) has happened or

not because ½0; 1=2ÞgAðsÞ. The second—and more important—problem with algebras as a

model of information is that it can predict the wrong choice by a decisionmaker.

Suppose the decisionmaker is a risk-neutral expected-utility maximizer. The individual

must first choose between s and sV, and then decide to buy either a bond or a stock. The

return on the stock is SðxÞ ¼ x . The bond yields 3/8 in every state of the world.

Suppose in addition that the state of the world is chosen according to a uniform

distribution on [0, 1].

The decisionmaker evaluates S according to EðS j AðsÞÞ (or EðS j AðsVÞÞÞ , as the

conditional expectation is the decisionmaker’s prediction based on the informational

content of s or sV. Since EðS j AðsÞÞ, viewed as a random variable, must be measurable

with respect to AðsÞ—which consists of events with probability 0 or 1 (i.e. essentially of

ft;XgÞ—it must be a.s. constant and equal to 1/2. See Appendix A for a proof. It is

immediate that

EðS j AðsVÞÞðxÞ ¼ 1=4 if x < 1=2
3=4 otherwise:

�

In almost every state of the world EðS j AðsÞÞ ¼ 1=2 is larger than the return to the

bond (3/8), so if the individual decides to observe information s she will a.s. buy the

stock. The expected utility of choosing s is thus 1/2. On the other hand if she chooses sV,
she will buy the bond when x < 1=2 and the stock if xz1=2, and will thus get a utility

of (3/8)(1/2) + (3/4)(1/2) = 9/16 >1/2.

Then, while s is obviously more informative than sV, the decisionmaker strictly

prefers sV over s. The reason is that the algebra generated by s, and used in forming

EðS j AðsÞÞ, is not informative at all: it is a collection of trivial sets, having either



J. Dubra, F. Echenique / Mathematical Social Sciences 47 (2004) 177–185 179
probability 0 or 1. The algebra generated by sV, on the other hand, distinguishes [0, 1/2)

from [1/2, 1].

(b) The problem discussed in (a) does not disappear if we use r-algebras instead of

algebras: suppose that the decisionmaker evaluates S according to EðS j rðsÞÞ or EðS j r
ðsVÞÞ, where rðsÞ is the r-algebra generated by s.1 It is still true (see Appendix A) that

EðS j rðsÞÞ ¼ 1=2 a.s., while EðS j rðsVÞÞ is 1/4 on [0, 1/2) and 3/4 on [1/2, 1]. If the

individual decides to observe information s she will a.s. buy the stock—the expected

utility of choosing s is 1/2, and the decisionmaker still prefers sV over s.
The problem now is that rðsÞ is still trivial; it is the collection of sets that are either

countable or have countable complement.

1.2. Our point

The problem in our example is that finer partitions need not generate finer algebras or

r-algebras. We show below that algebras and r-algebras do not preserve information

because they are not closed under arbitrary unions. Heuristically, if the decisionmaker

‘knows’ that some collection E of events is false, she should ‘know’ that their union is

false. If E is infinite, however, the union of events in E need not be in the algebra, and

if E is uncountable, the union of events in E need not be in the r-algebra.
As is well-known, there are many technical problems with ‘large’ r -algebras—and

closedness under arbitrary unions would generally deliver large r-algebras. We have no

solution to offer, but we think it is important to document and explain these problems with

the interpretation of r-algebras.
We do not argue that using r -algebras as the informational content of signals is

always inappropriate. We only want to emphasize that one should be careful when using

r-algebras as the informational content of signals. We believe that this is relevant, as

even technically able economists ignore the problems we emphasize (see the discussion

in Section 3).

1.3. Notation and definitions

A partition s of a set X is a collection of pairwise disjoint subsets whose union is X;

note that for each state of nature x there is a unique element of s that contains x. A

decisionmaker whose information is represented by s is informed only that the element of s
that contains the true state of nature has occurred. In other words, the decisionmaker

cannot distinguish between states that belong to the same element of s . If s; sV are

partitions, say that sVis finer than s, written sVzs, if for every CasV there is B in s such that
CpB. For any collection C of subsets of X, the r-algebra generated by C, denoted rðCÞ, is
the smallest r-algebra that contains C.

We can define information structures to be signals f : X ! Y , for some set Y of

observable signal values. This way of modeling information is equivalent to using
1Alternatively, one may use r-algebras generated by signals (random variables) associated to the two information

structures. As we discuss in Section 3.1, the same phenomenon shows up. See our comment in Section 3.4 for a

third interpretation of the informational content of r-algebras.
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partitions: each signal generates a partition, and each partition can be interpreted as a

signal. Define the partition Pf of X associated to f by

Pf ¼ f f 
1ðyÞ: yaYg:

A pair ðX;FÞ, where F is a r-algebra of subsets of X, is a measurable space. Let

ðX;FÞ and ðY ;GÞ be two measurable spaces. A function f : X ! Y is measurable if

f 
1ðBÞaF for all BaG . The r -algebra generated by f , denoted rð f ;GÞ , is the

smallest r-algebra on X for which f is measurable. We say that a r-algebra B on Y

distinguishes f if for all xaX, f ðxÞaB.

For a given set of states of nature X and an arbitrary measurable set ðY ;BÞ, a collection
a ¼ ðmxÞxaX of probability measures on ðY ;BÞ is an experiment. If B, C are r-algebras
on Y , W , respectively, a stochastic transformation T is a function Qðy;EÞ defined for all

yaY and EaC which for fixed E is a measurable function of y and for fixed y is a

probability measure on C. For any probability measure m on B, the function

MðEÞ ¼
Z

Qðy;EÞdmðyÞ

is a probability measure on C, denoted by Tm. If a ¼ ðmxÞxaX and b ¼ ðMxÞxaX are two

experiments, with mx,Mx defined onB and C, respectively, we shall say that a is sufficient
for b, or b is a garbling of a, written a d b if there exists a stochastic transformation T such

that Tmx ¼ Mx for all x. For f : X ! Yf and g : X ! Yg, we will say that g is a garbling of

f if b ¼ ðdgðxÞÞ is a garbling of a ¼ ðdf ðxÞÞ. To understand this definition, notice that an

experiment is just a function from X to the set of probability measures on some space

ðYf ;BÞ. Then, a signal f : X ! Yf can be identified with the experiment that associates

with each x, the lottery which is degenerate in f ðxÞ.
2. A Blackwell theorem

Consider the following set-up.

� X is the set of states of nature;
� Z is the set of consequences, Z has at least two elements;
� an act is a function a: X ! Z, A ¼ ZX is the set of all acts;
� a decisionmaker is a preference relation v on A (v is a complete transitive binary

relation on A).

The information structures available to a decisionmaker are signals f : X ! Yf for

some space Yf . The decisionmaker is informed of the value taken by f and she must then

choose a consequence in Z . An act a: X ! Z is f -feasible if aðxÞ ¼ aðxVÞ whenever

f ðxÞ ¼ f ðxVÞ.
A decisionmaker v prefers signal f to g if and only if, for any g-feasible act a, there

exists an f -feasible act ã such that ãv a.
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Theorem A. Let f : X ! Yf and g : X ! Yg: The following are equivalent.

1. Every decisionmaker prefers f to g;

2. Pf is finer than Pg;

3. there is h: Yf ! Yg such that g ¼ h B f ;
4. g is a garbling of f ;

5. the r-algebra of arbitrary unions of elements in Pf is finer than the s-algebra of

arbitrary unions of elements in Pg;

6. for all r-algebras B, C on Yf, Yg that distinguish f and g, and are closed under

arbitrary unions, r(f, B) is finer than r(g, C).

Remark 1. Blackwell’s (1951) theorem is the equivalence of 1 and 4, in the context of

‘noisy signals’: his experiments are functions from X to the set of probability measures on

some space X . By enlarging the state-space, his context can be embedded in ours, but the

statement in Blackwell (1951) does not follow from our Theorem A applied to the

enlarged state-space. On the other hand, Blackwell’s theorem does not imply 1Z4 in the

present context, as his theorem was for a finite state space (this is also true of the version in

Blackwell, 1953). Therefore, neither theorem is more general.

Remark 2. We believe that the equivalence of 1, 2, 3, and 4 in Theorem A is known, but

we are unaware of a statement or proof in print. In any case, we are interested in the

equivalence of 1 with 5 and 6 as an explanation of our example in 1.1.

Theorem A explains the paradox in our example. Signal t is more informative than tV,
but the s-algebra generated by t is not finer than the r-algebra generated by sV. The root
of the problem is very simple: if the decisionmaker knows that no x with x < 1=2 has

occurred, any model of information should prescribe that the decisionmaker knows that [0,

1/2) has not occurred. But, if one models the decisionmaker’s information as rðsÞ, the
decisionmaker can never ‘know’ that the event [0, 1/2) occurred or not, as ½0; 1=2Þg rðsÞ.
Knowledge is closed under arbitrary unions, but r -algebras need not be.
3. Discussion

1. A common alternative to modeling the information content of a signal f : X ! Yf , when

Yf is endowed with a r-algebra C, is rðf ;CÞ, the r-algebra generated by f. By Theorem

A this construction will preserve information if r -algebras on target spaces are closed

under arbitrary unions. If this is not the case, it is easy to generate examples where

rð f ;CÞ does not preserve information. In fact, by choosing the r-algebras C and B on

target spaces appropriately, we can reproduce the example in the Introduction with

signals f ; g, and conditional expectations EðS jrð f ;CÞÞ and EðS jrðg;BÞÞ.2
2The signals f ; g : X ! X, where f is the identity and g is the indicator function of the interval [0, 1/2) work,

when X is endowed with the countable-co-countable r-algebra. Signal f is more informative than g , but the

decisionmaker ends up preferring g.
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As an illustration, consider the following situation. Suppose Yf ¼ Yg ¼ ½0; 1�, and let
F be any r-algebra of subsets of [0, 1] such that f1gaFp 2½0;1�. If f : X ! Yf is the

identity, and g ¼ vE for some Ea 2½0;1�\F, we obtain rð f ;FÞ ¼ F, and rðg;FÞ ¼
ft;E;Ec; ½0; 1�g . Thus rð f ;FÞ and rðg;FÞ are not comparable, while f is more

informative than g.

This example shows the same problems as those in the Introduction may arise when

F is chosen appropriately. The results of Blackwell (1956) show that under some

regularity conditions on ðX;BÞ and the r-algebras on Yf and Yg, the r-algebra generated
by f is finer than that generated by g. This raises the issue of what r-algebra should be

used on the target space. Unfortunately, we do not have a preference-based theory for

selecting among alternative r-algebras on target spaces.3 An additional problem with

using rð f ;FÞ as the informational content of f, is that rð f;FÞ changes when F
changes, even though the informational content of f does not.

One could interpret C as the events that the decisionmaker can observe, and use this

interpretation in order to choose among different r-algebras on the target spaces. But

then C should also be closed under arbitrary unions, both to preserve information

(Theorem A) and because ‘perception’—much like ‘knowledge’—should be closed

under arbitrary unions.

2. When X is countable, Theorem A shows that r-algebras preserve information, as any

union of sets in X can at most be countable. Many models, though, require an

uncountable number of states of nature. This is the case, for example, of Savage’s

model of decision under uncertainty (if we want subjective probabilities to be countably

additive, as is usually the case in economics), or of games of incomplete information

(Mertens and Zamir, 1985; Brandenburger and Dekel, 1993). In other models, an

uncountable space is necessary to use calculus methods.

3. The information-preserving r -algebras of arbitrary unions have two well-known

disadvantages (see e.g. Dudley, 1989): they may be too large for some countably

additive measures to be well-defined, and they have no clear links to the spaces’

topological properties, like the Borel.

4. Stinchcombe (1990) proves that, in the spaces that Blackwell (1956) introduced, a

countably generated r-algebra F can be identified with the partition

f\ fB: BaF; xa Bg: xaXg

of its atoms, and that all r-algebras are ‘close’ to a countably generated r-algebra.4 In
this particular sense, then, arbitrary r-algebras possess an informational content.

5. Our example has some similarities with Example 4.10 in Billingsley (1995). Billingsley

argues that the interpretation of r-algebras as information is weak, using the following

argument. Firstly, he notices that the countable-co-countable r-algebra F generates the

finest partition of [0, 1] (two states belong to the same element of the partition if no

BaF distinguishes between them). In that sense, F contains ‘all the information’.

Secondly, he notices that for every BaF and any Lebesgue measurable C, the
3We thank Larry Epstein, Peter Fishburn, Itzak Gilboa, Massimo Marinacci and Peter Wakker for their feedback

on this issue.
4We are grateful to Maxwell Stinchcombe for pointing this out.
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Lebesgue probability of C conditional on B is just the Lebesgue probability of C. In that

sense, F contains no information at all.

There is one important difference between Billingsley’s example and our example:

we argue that what makes the connection between information and r -algebras weak is

that finer partitions need not generate finer r -algebras; Billingsley’s argument is

concerned with the partitions generated by r-algebras. This distinction is relevant

because different partitions generate different r-algebras, but different r-algebras may

generate the same partition. In particular, Billingsley’s example does not imply that

Blackwell’s theorem is false when information is modeled as r-algebras—our example

does.

6. The results in this paper are very simple, the question remains if they are not ‘known’,

or part of some oral tradition—we are confident they have not appeared in print.

Yannelis (1991) claims that finer partitions generate finer r-algebras. We do not wish to

claim that any of his results are false, but we do believe Yannelis’ paper is proof that our

points are original.
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Appendix A

Proof of E(Sjjs(t))=1/2 in the example of the Introduction. We shall show that any

version of EðS jrðsÞÞ is a.s. equal to 1/2. Let j : X ! R be any version of EðS jrðsÞÞ .
We shall show that j
1ð1=2;þlÞ and j
1ð
l; 1=2Þ are countable sets; this suffices

as countable sets have probability zero. We first show that, for arbitrary natural n, j
1

½1 2þ 1=n;þlÞ= is countable. Suppose it is uncountable, then ðj
1½1 2þ 1=n;þlÞÞc= is

countable, because j is rðsÞ 
measurable and rðsÞ is the countable-co-countable r -
algebra. Then j
1½1 2þ 1=n;þlÞ= has measure one and we obtain,

1

2
¼

Z
j
1½1=2þ1=n;þlÞ

jðxÞdPðxÞz
Z
j
1½1=2þ1=n;þlÞ

1

2
þ 1

n

� �
dP ¼ 1

2
þ 1

n
;

a contradiction. That j
1ð1 2;þlÞ= is countable follows, as

j
1ð1=2;þlÞ ¼v
n

j
1½1=2þ 1=n;þlÞ:

Similarly, j
1ð
l; 1=2Þ is countable. 5
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The proof of EðS jAðsÞÞ ¼ 1=2 a.s. is to repeat the steps above, with the difference that

now j
1½1 2þ 1=n;þlÞ= is finite.

A more subtle point is that the conditional expectation with respect to an algebra is not

guaranteed to exist by the conventional theory of conditional expectation.5 In our example,

the conditional expectations EðS jAðsÞÞ and EðS jAðsVÞÞ are well-defined.

Proof of Theorem A. (2Z1). If Pf zPg , all g-feasible acts are f -feasible. The result is

immediate. To prove (1Z2), suppose, by way of contradiction, that Pf is not finer than Pg.

Then there exist w and w V such that f ðwÞ ¼ f ðwVÞ but gðwÞ p gðwVÞ. Define, for x p y the

following act

aðw WÞ ¼ x if gðxWÞ ¼ gðxÞ
y otherwise

�

Note that a is g-feasible but not f -feasible. Let v be a decisionmaker such that adã for all

ãaA. There is no f -feasible ãaA such that ãva, so v does not prefer f to g.

(2Z3) Suppose PfzPg. For each zagðXÞ let Y z
f ¼ f ðg
1ðzÞÞ and let z̃ be any element in

Z. It is easy to check that for

hðyÞ ¼ z if yaY z
f for somezin gðXÞ

z̃ otherwise

�

we have h B f ¼ g.

(3Z2) If it is not the case that Pf z Pg, there exist x and xV such that x and xV are in
the same element of Pf but not of Pg. Then, for all h: Yf ! Yg,

hð f ðxÞÞ ¼ hð f ðxVÞÞ but gðxÞ p gðxVÞ

so h B f p g.

(2Z 4). Notice that Qðy; �Þ ¼ dgf 
1ðyÞð�Þ satisfies

Tdf ðxÞðEÞ ¼
Z

Qðy;EÞddf ðxÞðyÞ ¼ Qð f ðxÞ;EÞ

¼ dgf 
1ðf ðxÞÞðEÞ ¼ dgðxÞðEÞ

as was sought.

(4Z 2). By hypothesis, dgðxÞðEÞ ¼ mQðy;EÞddf ðxÞðyÞ for some Q. Then, f ðxÞ ¼ f ðxVÞ
implies that dgðxÞðEÞ ¼ dgðxVÞðEÞ. So gðxÞ ¼ gðxVÞ.

(2Z5) If Pf zPg, for every collection of sets fCig in Pg, there exists a collection fBig in
Pf such that [i Ci ¼ [i Bi. Thus, letting aðsÞ stand for the r-algebra of arbitrary unions of

elements in s, aðPgÞpaðPf Þ.
5The theory uses the Radon–Nykodim Theorem. There are versions of the Radon–Nykodim Theorem for

measures on algebras—see Berti et al. (1992)—but we do not know that they give an existence theorem for

conditional expectations with respect to an algebra.
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(5Z2) Suppose that it is not the case that Pf zPg. This means that there exists a set C in

Pg such that for every collection fBig in Pf , C p [i Bi. Thus, C a aðPgÞ, but C g aðPf Þ, a
contradiction.

(2Z6) Suppose Pf zPg, and that carðg;CÞ. This means that there exists CaC such

that c ¼ g
1ðCÞ. Since Pf zPg,

c ¼v
ia I

pi

for some index set I and piaPf for all i. Since B distinguishes f , f ðpiÞaB for all i, and

since B is closed under arbitrary unions, [ia I f ðpiÞaB. We then obtain that

c ¼ f 
1 v
ia I

f ðpiÞ
� �

a rð f ;BÞ:

(6Z2) It is easy to check that since B (C resp.) distinguishes f (g resp.), rðf ;BÞ
ðrðg;CÞresp:Þ is the collection of arbitrary unions of elements of Pf (Pg resp.).

Therefore, for all caPg we have carðg;CÞ, and by hypothesis, carðf ;BÞ. But then,
there must exist a collection fpigia I such that piaPf for all i, and c ¼ [ ia I pi , so

Pf zPg: 5
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