
Available online at www.sciencedirect.com

Journal of Mathematical Economics 45 (2009) 576–588

A theory of time preferences over risky outcomes

Juan Dubra
Universidad de Montevideo, Prudencio de Pena 2440, Montevideo 11.600, Uruguay

Received 22 February 2007; received in revised form 15 November 2007; accepted 6 December 2007
Available online 23 December 2007

Abstract

This paper provides two representation theorems for time preferences. They both cover as special cases a variety of time preference
models considered in the experimental and theoretical literatures on intertemporal choice. In particular, similarity relations on time
and outcomes, exponential, quasi-hyperbolic and hyperbolic discounting are special cases of the theorems. This approach identifies
certain factors that are common to time preference structures which look so different.

The paper builds on the recent work by Masatlioglu and Ok [Masatlioglu, Y., Ok, E., 2008. A theory of (relative) discounting.
Journal of Economic Theory, in press] on Euclidean bundles and obtains similar representation theorems for the case of compact,
separable and connected spaces of bundles. My work allows for the inclusion of the case in which bundles are lotteries.
© 2007 Elsevier B.V. All rights reserved.

JEL classification: D11; D90

Keywords: Time preferences; Intransitive preference relations; Similarity relations; Hyperbolic discounting; Time consistency; Stationarity; Present
bias

1. Introduction

The theory of time preferences has recently been growing steadily with the contributions of two literatures. One
of the lines of research has documented various types of anomalies that the standard theory of discounting fails to
encompass. The better known of these anomalies is the time preference reversal: people tend to choose, for example,
US$ 100 now and not US$ 110 tomorrow, and US$ 110 in 31 days and not US$ 100 in 30 days. Also relevant to the
current paper are the observed violations of transitivity that arise due to the passage of time. The second line of research
concerning time preferences is concerned with producing models that would fare better than the discounting model in
relation to one specific type of anomaly. Within this literature, one can find, among others, the works of Phelps and
Pollak (1968), Laibson (1997) and Rubinstein (2003).

Until very recently there had been no attempts to produce a theory of time preferences that encompassed several
of the observed violations. The work of Masatlioglu and Ok (2008) is the first attempt to produce a time preference
model which:

(a) Encompasses the following anomalies: hyperbolic discounting, subadditive discounting and intransitivity
of dynamic preferences (Roelofsma and Read, 2000). This point is important since, as has been argued
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by Frederick et al. (2002) who reviewed this literature, one can not tell which model is more appro-
priate according to the experimental evidence. One must therefore allow for various kinds of time
preferences.

(b) Encompasses the models of: time discounting (Samuelson, 1937; Koopmans, 1960; Fishburn and Rubinstein,
1982), β − δ or quasi-hyperbolic discounting (Phelps and Pollak, 1968; Laibson, 1997), more general hyperbolic
discounting and time preferences based on similarity relations (Rubinstein, 1988, 2003). This point is important
since producing a model which encompasses all these different models allows us to distinguish which features are
common to all.

(c) Is suitable for applications.
(d) Is axiomatic.

The work of Masatlioglu and Ok (2008) considers only those time preferences that are defined on the prize-
time space, just as in Fishburn and Rubinstein (1982). Individuals must choose between dated bundles: bundle x
in period t versus bundle y in period s. That is, neither paper considers preferences over streams of consumption
bundles.

In this paper I address two shortcomings of the work of Masatlioglu and Ok (2008) while also maintaining lit-
erals a-d above. The two drawbacks I deal with in this paper are: their bundles are elements of open boxes of
Rn, and they can not cope with the case where bundles are lotteries. I manage to obtain a representation similar
to theirs for the case where the bundle space is a compact and connected separable space. The main advantage of
extending their analysis to this realm is that my representation theorem can be used to study choices between lot-
teries. This is important since most economic problems involve some form of uncertainty or risk. Moreover, even
though most “real” economic situations involving unknown prizes do not have known probabilities (i.e. there is uncer-
tainty as opposed to risk), the study of preferences over “risky prizes” -time space are relevant. First, representation
theorems for this context can be viewed as a first step towards the more “relevant” Savage-type results, since the
methods I use are quite simple. Second, most economic models in applied work involve von Neumann–Morgenstern
preferences, and not those of Savage or Anscombe-Aumann. The reason for this is that they are simpler to work
with. In this sense then, preferences over the “risky prize” -time space can be viewed as a tool for more applied
researchers.

This paper is not a generalization of the work of Masatlioglu and Ok. Rather, I use a similar set of axioms, to obtain
a similar result, in a different context. Some of my axioms are weaker, but I use a transitivity axiom that is stronger
than theirs. Yet, my transitivity axiom is still (a lot) weaker than standard transitivity. Finally, in this paper I do not
discuss uniqueness, which was dealt with by Masatlioglu and Ok (2008), or with applications of the model, since my
model can also be used in all of their settings.

2. The model and axioms

Let X be a compact, separable connected topological space. The set of times is an interval T, containing 0, in R+.
Let D ≡ X × T be the space of dated bundles. For each t ∈ T , by the t th time projection of �⊂ D × D, I mean the

binary relation �t on X defined as x�ty iff (x, t) � (y, t).
The following definition introduces the main objects of the present analysis.

Definitions. A binary relation � on D is said to be a time preference on D if it satisfies the following conditions:

(i) � is complete, i.e. ∀(x, t), (y, s) ∈ D, (x, t) � (y, s) or (y, s) � (x, t).
(ii) � is continuous: Upper and Lower contour sets of � are closed.1

(iii) �0 is transitive.
(iv) �0 = �t for all t ∈ T .

1 This is, for all (x, t) ∈ D, the sets U = {(y, s) : (y, s) � (x, t)} and L = {(y, s) : (x, t) � (y, s)} are closed. Under completeness, this notion of
continuity is equivalent to the stronger version which I will use throughout the paper: � is a closed subset of D × D.
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All axioms are imposed on �, a time preference on D ≡ X × T

(A1) Time Discounting (TD). For any x, y, z ∈ X and s, t, v ∈ T , if v ≤ t then

(x, t)

{
�
�

}
(y, s) implies (x, v)

{
�
�

}
(y, s).

This axiom is standard, and just says that the passage of time is bad, or that bundles are good. The following axiom
is a “natural” complement to the previous one, and says that if for a given bundle one time period (later, say) is worse
than another, the same is true for all bundles: the effect of time does not depend on the specific bundle.

(A2) Orthogonality (O). For all x, y ∈ X and s, t ∈ T

(x, t) � (x, s) ,if and only if (y, t) � (y, s).

If (x, t) ∼ (x, s) for some x ∈ X, and t, s ∈ T , we say that s and t are equivalent. Given Orthogonality, if we say
that s and t are equivalent, that does not depend on the choice of x used for comparison of the time periods. The
following axiom is the main axiom of this paper. It will allow for the separation of the effects of time and bundles in
the preferences.

(A3) Irrelevance (I). For all w, x, y, z ∈ X and r, s, t, v ∈ T, r < s, t < v :

(y, r) ∼ (z, s)

and

(y, t) ∼ (z, v)

⎫⎪⎬
⎪⎭ ⇒ (w, r) � (x, s) ⇔ (w, t) � (x, v)

The reason why the axiom “should” be true, is that when it is true that (y, r) ∼ (z, s) and (y, t) ∼ (z, v), the individual
deems the passage of time from r to s as “equivalent” to the passage of time from t to v. Then, when comparing (w, t)
and (x, v), the individual can refer to his choices between (w, r) and (x, s). It is a stability property of preferences:
when we change the time periods, preferences don’t change. Irrelevance is equivalent to the Separability axiom of
Masatlioglu and Ok when �0 = �t for all t (which they also assume). In their formulation the conclusion of the axiom
is (w, r) ∼ (x, s) ⇔ (w, t) ∼ (x, v). The axiom is similar to hexagon the conditions usually used for the separation of
preferences in the time-prize spaces, or for additive representations (see for example Debreu, 1960; Karni and Safra,
1998; Fishburn and Rubinstein, 1982; Wakker, 1988, 1989). The Irrelevance axiom for time preferences is weaker (in
the presence of Orthogonality), for example, than the formulation of Fishburn and Rubinstein: for all x, y ∈ X and all
s, t, s + τ, t + τ ∈ T ,

(x, t) ∼ (y, t + τ) implies (x, s) ∼ (y, s + τ).

To see so, recall that in the presence of condition �0 = �t for all t of time preferences, the Irrelevance axiom is
equivalent to: for all w, x, y, z ∈ X and r, s, t, v ∈ T, r < s, t < v :

(y, r) ∼ (z, s)

and

(y, t) ∼ (z, v)

⎫⎪⎬
⎪⎭ ⇒ (w, r) ∼ (x, s) ⇔ (w, t) ∼ (x, v).

Then, by the Fishburn Rubinstein condition we have (y, r) ∼ (z, s) ⇒ (y, t) ∼ (z, t + s − r) and then (y, t) ∼ (z, v)
implies that (z, t + s − r) ∼ (z, v), so that t + s − r is equivalent to v. Then, (w, r) ∼ (x, s) implies by the Fishburn
Rubinstein condition that (w, t) ∼ (x, t + s − r), and since t + s − r is equivalent to v, we obtain (w, t) ∼ (x, v) as was
to be shown.

For the next axiom, we introduce the following notation. For any r, s, t such that r < s < t, if for all y and z,
(y, r) ∼ (z, s) holds if and only if (y, s) ∼ (z, t) holds, we write r|s|t. The notation emphasizes that the time period s is
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“midway” between r and t: the effect of the passage of time from r to s when comparing (y, r) and (z, s) is equivalent
to the effect of the passage of time from s to t when comparing (y, s) and (z, t).

(A4) Weak Time-Transitivity. The preference relation � is transitive when restricted to all r, s and t such that r|s|t.

Just to clarify, the Weak Time-Transitivity axiom specifies that for all r, s and t such that r|s|t, we have that
(x, t1) � (y, t2) � (z, t3) implies (x, t1) � (z, t3) for all x, y, z ∈ X and t1, t2, t3 ∈ {r, s, t}. Weak Time-Transitivity is
a weaker property than transitivity, since it restricts preferences to be transitive only when considering three special
periods. Continuing with the interpretation that once the individual knows how to compare choices between s and t
when he knows how to compare choices in r and s, Weak Time-Transitivity is a natural property. Masatlioglu and Ok
(2008) postulate that preferences are transitive whenever choices concern bundles in two periods. Thus, my transitivity
requirement is stronger than theirs.

3. The two theorems

I now present my main result concerning dated bundles.

Theorem 1. Suppose X is a compact, connected and separable space. The binary relation � is a time preference
that satisfies Time Discounting, Weak Time-Transitivity, Orthogonality and Irrelevance iff there exist two continuous
functions u : X → R and f : T 2 → R such that

(x, t) � (y, s), iff u(x) ≥ u(y) + f (t, s) (1)

for all (x, t), (y, s) ∈ X × T , and f (·, t) is increasing; f (s, t) + f (t, s) = 0; 2f (r, s) = f (r, t) whenever f (r, s) =
f (s, t).

The form of the representation in Eq. (1) is the same as in Masatlioglu and Ok (2008). More concretely, their prize
space X is an open interval in R, and their preference relations satisfy their set of axioms if and only if there exists
an increasing homeomorphism U : X → R++ and a continuous map η : [0, ∞)2 → R++ such that (x, t) � (y, s)
iff U(x) ≥ U(y)η(t, s). Of course, by taking logarithms one can transform this expression into Eq. (1), and one can
similarly transform representation (1) into that of Masatlioglu and Ok by exponentiating both sides of the inequality
and letting U = eu and η = ef .

The main differences between the representation of Masatlioglu and Ok and mine lies in the conditions that must
be satisfied by the functions involved. Their theorem has two requirements on U and η which ensure that:

(i) a long enough passage of time compensates for any “increase” in the quality of the bundle, since η(∞, s) = 0 for
all s; that is, any bundle x at t = ∞ is worse than any date bundle (y, s);

(ii) there always exists bundles good enough (or bad enough) that will compensate for any passage of time, since U
is a homeomorphism between X and R++; for any dated bundle (y, s) and time t, there exists x and x′ such that
(x, t) � (y, s) � (x′, t).

On the other hand, I have the requirement that 2f (r, s) = f (r, t) whenever f (r, s) = f (s, t). While this requirement
will be satisfied by all transitive and Weak Time transitive preferences, it may pose a problem in very specific instances
of subadditive discounting. This restriction in the functional form of f reflects the fact that if the passage of time from
r to s has the same effect as the passage of time from s to t, then the passage of time from r to t “should” be twice the
effect of the passage from r to s.

Theorem 1 is important for two reasons. It provides a representation similar to that of Masatlioglu and Ok
(2008) for the context of compact, connected separable spaces, which were not covered in their work. But
most importantly, it allows the extension to the setup of choices over lotteries. This is relevant because the
work of Masatlioglu and Ok is not suitable for that setup. All the applications and examples of Masatlioglu
and Ok are also applications and examples of this Theorem 1, so the interested reader is referred to their
work.
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3.1. Risk

We now turn to the representation of preferences over dated lotteries. Formally, let Z be a compact, connected,
separable, metric space. We will let X denote the space of probability measures over Z, endowed with the topology of
weak convergence.2 For the representation of preferences over lotteries, we add the standard independence axiom.

Independence. The preference relation �0 satisfies the standard independence axiom: for all x, y, z ∈ X and
α ∈ [0, 1], x�0y implies αx + (1 − α)z�0αy + (1 − α)z.

Although Independence has been criticized from the descriptive viewpoint, Expected Utility is still the single most
used tool in choice with risky alternatives. Therefore, using the Independence axiom is thus a natural starting point in
the development of the theory of time preferences over risky alternatives. Moreover, the proof of the following theorem,
my main result for risky choice, shows that there is no interaction between Independence and the other axioms. This
implies that the present theory can be extended without difficulty to encompass other standard models of risky choice.
In the following Theorem, for a lottery x and a function v, Exv denotes the expected value of v, according to lottery x.

Theorem 2. The binary relation � is a time preference that satisfies Time Discounting, Weak Time-Transitivity,
Orthogonality, Irrelevance and Independence iff there exist three continuous functions u : [0, 1] → R, v : Z → [0, 1]
and f : T 2 → R such that

(x, t) � (y, s) iff u(Exv) ≥ u(Eyv) + f (t, s)

for all (x, t), (y, s) ∈ X × T , and f (·, t) is increasing; f (s, t) + f (t, s) = 0; 2f (r, s) = f (r, t) whenever f (r, s) = f (s, t).

As a simple application of Theorem 2, one can replicate the results concerning Rubinstein Bargaining in Masatlioglu
and Ok, where the set A of all agreements to the bargaining problem is the set of all probability measures λ on [0,1]
with finite support.3 In this case, if the agreement λ is reached, then with probability λ({a}) player 1 will receive a, and
player 2 receives 1 − a.

4. Proofs

4.1. Proof of Theorem 1

The basic idea of the proof is to define f (0, ·), and then use Irrelevance and f (0, ·) to build f (t, ·) for all other t.
Before turning to the proof, let me first prove a lemma, about a new axiom, that will be useful in the sequel.

Strong Irrelevance (SI). For all w, x, y, z ∈ X and r, s, t, v ∈ T, r < s, t < v :

(y, r) ∼ (z, s)

and

(y, t) ∼ (z, v)

⇒
(w, r) � (x, s) ⇔ (w, t) � (x, v)

and

for all p ∈ [r, s] there is q ∈ [t, v] such that (w, r) � (x, p) ⇔ (w, t) � (x, q)

Lemma 0. Suppose X is a compact, connected and separable space and that the binary relation � is a time preference
that satisfies Irrelevance and Time Discounting. Then it satisfies Strong Irrelevance.

Proof. Fix any p ∈ [r, s] and suppose that (y, r) ∼ (z, s) and (y, t) ∼ (z, v) are satisfied. By continuity U = {(w, p) :
(w, p) � (y, r)} is closed, and by Time Discounting, (z, p) ∈ U. Similarly, (y, p) ∈ L = {(w, p) : (y, r) � (w, p)},
which is is closed. Since X is connected, there exists (z′, p) ∈ U ∩ L, so that (y, r) ∼ (z′, p). Using again continuity and
Time Discounting, one can find q ∈ [t, v] such that (y, t) ∼ (z′, q). Then, Irrelevance, (y, r) ∼ (z′, p) and (y, t) ∼ (z′, q)
imply that for all w and x,

(w, r) � (x, p) ⇔ (w, t) � (x, q)

as was to be shown. �

2 Recall that, under this topology, a sequence of probability measures (pn) converges to p if and only if
∫

X
f dpn →

∫
X

f dp for all continuous
real valued functions in Z.

3 I thank a referee for suggesting this application. The calculations are omitted because they are almost identical to those in Masatlioglu and Ok.
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4.1.1. Defining f (0, ·)
If for all t ∈ T , (x, 0) ∼ (x, t) the problem is trivial, so assume that for some t̄, (x, 0) � (x, t̄). Likewise, if for all

x, y(x, 0) ∼ (y, 0) the problem is trivial, so assume that for some a �0− maximal x̄ and minimal x, (x̄, 0) � (x, 0).

Step 1. Let t0 = 0 and fix any t1 such that for some x, (x, 0) � (x, t1) and (x̄, t1) � (x, 0). One can easily show that
since X is connected and separable, and � is continuous, X × {t0, t1} is � − separable (there is a countable set Z ⊂ X

such that whenever (x, t) � (y, s) for t, s ∈ {t0, t1} there is a z ∈ Z such that (x, t) � (z, r) � (y, s) for r, t, s ∈ {t0, t1})
and that therefore, there exists a continuous U : X × {t0, t1} such that (x, t) � (y, s) iff U(x, t) ≥ U(y, s) for all x, y

in X and s, t ∈ {t0, t1}. The U function has the property that U(x, t0) > U(x, t1) for all x, so that if we let u ≡ U(x, t0)
and h(u) ≡ U(x, t1), by the solution to the Abel functional equation given in Kuczma’s Theorem, (see Kuczma et
al., 1990) we know that there exists a function g such that g(u) = g(h(u))+ constant. This means that there exists a
u1 : X → R such that (x, t) � (y, s) iff u1(x) ≥ u1(y) + f (t, s). Multiplying both sides by a constant one can normalize
f (t0, t1) = −f (t1, t0) = −1 and by subtracting a constant to u1 one can normalize u1(x̄) = 1.

Step 2. We start this step with two Lemmas.

Lemma 2. Suppose X is a compact, connected and separable space and that the binary relation� is a time preference.
Fix any r, t ∈ T such that r < t and (x̄, t) � (x, r). Then, there exists s such that r|s|t.

Proof. If t is equivalent to r, in the sense that (x, t) ∼ (x, r) for all x, there is nothing to prove, since all s ∈ (r, t)
are such that r|s|t. Therefore, suppose that (x, r) � (x, t) for all x. Then, by continuity and connectedness of X and
(x̄, t) � (x, r) � (x, t) there exists x̃ such that (x, r) ∼ (x̃, t). Let [x, x̃] ≡ {x : x̃�0x � x}. Define the following two
correspondences from [x, x̃] to [r, t]:

G1(x) = {s : (x, r) ∼ (x, s)} and G2(x) = {s : (x, s) ∼ (x, t)} .

That G1 and G2 are nonempty valued (i.e. well defined correspondences) follows from continuity and connectedness of
X. We now show that G1 has a closed graph (the proof for G2 is analogous and omitted). Take any net (xα, sα) → (x, s)
in the graph of G, that is, (x, r) ∼ (xα, sα) for all α. Using continuity we obtain (x, r) ∼ (x, s) so that the graph is
closed.

Define G = G1 − G2, and recall that the lower inverse of G is defined by Gl(A) = {x : G(x) ∩ A /= ∅}. Since
r ∈ G1(x) and t ∈ G2(x), r − t ∈ G(x), so that Gl([r − t, 0]) is nonempty. We also know that since G has a closed graph,
Gl([r − t, 0]) is closed.4 Similarly, Gl([0, t − r]) is nonempty and closed, so that connectedness of X ensures that there
exists x∗ such that 0 ∈ G(x∗), which means that for some s, (x, r) ∼ (x∗, s) and (x, s) ∼ (x∗, t) as was to be shown.
�

Lemma 3. Suppose X is a compact, connected and separable space and that the binary relation � is a time preference
that satisfies Time Discounting. For any x, y ∈ X and r, t ∈ T such that (x, r) � (y, t). Then, there exists w such that for
r|s|t, (x, r) � (w, s) � (y, t).

Proof. If (x, r) � (y, s) � (y, t), we are done and there is nothing to prove, so suppose (y, s) � (x, r) � (y, t). Since by
Time Discounting we also have (x, r) � (x, s) we obtain (y, s) � (x, r) � (x, s). Since the sets U = {z : (z, s) � (x, r)}
and L = {z : (x, r) � (z, s)} are nonempty and closed and X is connected, there must exist w such that (x, r) ∼ (w, s)
as was to be shown. �

By Lemma 1, there exists t1/2 such that t0|t1/2|t1. Putting r = t0, s = t1/2 and w = t1 in Strong Irrelevance, we note
that

(x, t0) � (y, t1/2) ⇔ (x, t1/2) � (y, t1).

4 By the Closed Graph Theorem G is upper hemicontinuous, and by Lemma 16.4 of Aliprantis and Border (1999), the lower inverse of closed
sets is closed.
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Therefore, as in Step 1 we obtain a function u2 such that

(x, t0) � (y, t1/2) ⇔ u2(x) ≥ u2(y) + f (t0, t1/2) (x, t1/2) � (y, t1) ⇔ u2(x) ≥ u2(y) + f (t0, t1/2)

with f (t0, t1/2) = −f (t1/2, t0) = −1/2.
Moreover, u2 also represents preferences over t0, t1. Fix (x, t0) � (y, t1) and according to Lemma 2 pick any w such

that

(x, t0) � (w, t1/2) � (y, t1).

Then, we obtain

u2(x) ≥ u(w) + f (t0, t1/2)

u2(w) ≥ u2(y) + f (t0, t1/2)

}
⇒ u2(x) ≥ u2(y) + 2f (t0, t1/2).

The converse (from utility to preference) is treated similarly. Also, we normalize u2(x̄) = 1.

Step 3. Find t1/4 such that t0|t1/4|t1/2 and t3/4 such that (x, t0) � (y, t1/4) ⇔ (x, t1/2) � (y, t3/4). By Lemma 0 and
Strong Irrelevance, such a t3/4 exists. Find u3 such that

(x, t0) � (y, t1/4) ⇔ u3(x) ≥ u3(y) + f (t0, t1/4)

for f (t0, t1/4) = −f (t1/4, t0) = −1/4. Note that, as in Step 2,

(x, t0) � (y, t1/2) ⇔ u3(x) ≥ u3(y) + 2f (t0, t1/4).

Moreover, if (x, t0) � (y, t3/4), we can find w such that

(x, t0) � (w, t1/2) � (y, t3/4)

and hence,

u3(x) ≥ u3(w) + 2f (t0, t1/4)

u3(w) ≥ u3(y) + f (t0, t1/4)

}
⇒ u3(x) ≥ u3(y) + 3f (t0, t1/4).

Finally, it is also easy to show that .

(x, t0) � (y, t1) ⇔ u3(x) ≥ u3(y) + 4f (t0, t1/4).

We normalize u3(x̄) = 1.

Step n. One can continue in this fashion, and in Step n, find t1/2n−1 such that t0|t1/2n−1 |t1/2n−2 and for all k, set
t2k−1/2n−1 such that

(x, t0) � (y, t1/2n−1 ) ⇔ (x, t2k/2n−1 ) � (y, t(2k−1)/2n−1 ).

Also, one can find un such that for k ≤ 2n−1, (x, t0) � (y, tk/2n−1 ) if and only if

un(x) ≥ un(y) + kf (t0, t1/2n−1 ) = un(y) − k/2n−1.

It is important to notice that the sequence tkn is increasing in kn. Also, we normalize un(x̄) = 1.

Taking Limits. In the next claim we will show that un → u for some continuous u : X → R. We will now show
that u represents preferences on X × {0, t} for all t ≤ t1. Let

τ = {
t : ∃k, n such that t = tk/n

}
.

Take then any t ≤ t1 and suppose (x, t0) � (y, t). We have that for all tkn ∈ τ, with tkn ≥ t, (x, t0) � (y, tkn ). Moreover,
for some k,

lim
kn↘k

tkn = t



J. Dubra / Journal of Mathematical Economics 45 (2009) 576–588 583

so that for all n

(x, t0) � (y, tkn ) ⇔ un(x) ≥ un(y) − kn ⇒ u(x) ≥ u(y) − k.

That is, u represents preferences on 0, t for all t ≤ t1. With the procedure just described, one defines f (0, t) for all
t ≤ t1.

Showing that un → u. Endow the space of continuous bounded functions on X with the sup norm. This is a complete
metric space. We will show that the sequence {un} is Cauchy, so that there exists a continuous u such that un → u. Fix
any ε > 0. If t1/2N−1 is small enough (N large enough), for all x in X there exists y such that

(x, 0) ∼ (y, t1/2N−1 ) or (x, t1/2N−1 ) ∼ (y, 0).

Take M > max {N, 1 − (log ε/ log 2)}, and fix m ≥ n ≥ M. Since un and um represent �0 we have that um = g ◦ un

for some increasing g.

Lemma 4. Let K ∈ N be the maximal k such that 1 − (K/2n−1) is in the range of un and of un − (1/2n−1). Then, for
all k = 0, 1, . . . , K, k is in the range of un and of un − (1/2n−1) and

g

(
1 − k

2n−1

)
= 1 − k

2n−1 (2)

Proof. We first show that K is well defined, and K ≥ 1. Since we have chosen a large enough n, there exists x1 such
that (x1, 0) ∼ (x̄, t1/2n−1 ), so that

un(x1) = un(x̄) − 1

2n−1 = 1 − 1

2n−1 .

Since un(x̄) = 1, we obtain that 1 − (1/2n−1) is in the range of un and of un − (1/2n−1) establishing that K ≥ 1.
We now show by induction that for all k ≤ K, k is in the range of un and of un − (1/2n−1) and that equation (2) is

satisfied.
For k = 0, Eq. (2) is satisfied since we have normalized un(x̄) = um(x̄) = g(un(x̄)) = 1, and therefore we have

g1(1) = 1. For k = 1, Eq. (2) is satisfied because

un(x1) = un(x̄) + f (0, t1/2n−1 ) = un(x̄) − 1

2n−1 = 1 − 1

2n−1 (3)

and

um(x1) = um(x̄) − 1

2n−1 ⇔ g(un(x1)) = g(un(x̄)) − 1

2n−1 = g(1) − 1

2n−1 = 1 − 1

2n−1 . (4)

Therefore, using Eqs. (3) and (4) we obtain

g

(
1 − 1

2n−1

)
= 1 − 1

2n−1 .

Suppose now that we have shown that for some k − 1 < K, 1 − (k − 1/2n−1) is in the range of un and of un − (1/2n−1)
and that

g

(
1 − k − 1

2n−1

)
= 1 − k − 1

2n−1 .

We now show that 1 − (k/2n−1) is in the range of un and of un − (1/2n−1) and that

g

(
1 − k

2n−1

)
= 1 − k

2n−1 .

Since 1 and 1 − (K/2n−1) are in the range of un and un is continuous, 1 − (k/2n−1) is also in the range of un. Similarly,
1 − (1/2n−1) and 1 − (K/2n−1) are in the range of un − (1/2n−1) and since un − (1/2n−1) is continuous, 1 − (k/2n−1)
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is also in the range of un − (1/2n−1). Then, there exist x and y such that

un(x) = un(y) − 1

2n−1 = 1 − k

2n−1 ⇒ un(y) = 1 − k − 1

2n−1 .

We obtain

um(x) = um(y) − 1

2n−1 ⇔ g(un(x)) = g(un(y)) − 1

2n−1 ⇔ g

(
un(y) − 1

2n−1

)

= g (un(y)) − 1

2n−1 ⇔ g

(
1 − k − 1

2n−1 − 1

2n−1

)
= g

(
1 − k − 1

2n−1

)
− 1

2n−1 ⇔ g

(
1 − k

2n−1

)

= g

(
1 − k − 1

2n−1

)
− 1

2n−1 = 1 − k − 1

2n−1 − 1

2n−1 = 1 − k

2n−1

as was to be shown. �

Take now any x ∈ X. We will show that |um(x) − un(x)| < ε, proving that {un} is Cauchy. Two cases must be
considered.

Case 1. Not too low x. 1 − (k/2n−1) ≤ un(x) ≤ 1 − (k − 1/2n−1) for some k ≤ K. Let y, z be such that un(y) =
un(z) − (1/2n−1) = 1 − (k/2n−1). By Lemma 3, we know that

um(y) = g(un(y)) = g

(
1 − k

2n−1

)
= 1 − k

2n−1 = un(y)

Also,

um(z) = g(un(z)) = g

(
1 − k − 1

2n−1

)
= 1 − k − 1

2n−1 = un(z).

Therefore, we obtain

un(y) ≤ un(x) ≤ un(z) ⇔ um(y) ≤ um(x) ≤ um(z) ⇔ 1 − k

2n−1 ≤ um(x) ≤ 1 − k − 1

2n−1

which implies

|um(x) − un(x)| ≤ 1

2n−1 < ε

as was to be shown.
Case 2. Low x. un(x) < 1 − (K/2n−1). Let y be such that un(y) = 1 − (K/2n−1) (such a y exists by definition of K).

By Lemma 3, we have

um(y) = g(un(y)) = g

(
1 − K

2n−1

)
= 1 − K

2n−1 .
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We now show that um(x) ≥ um(y) − (1/2n−1). If um(x) < um(y) − (1/2n−1), we would have that since um

represents preferences on X × {0, t1/2n−1}, (y, t1/2n−1 ) � (x, 0), and therefore,

un(y) − 1

2n−1 > un(x) ⇔ 1 − K + 1

2n−1 > un(x)

which would contradict the maximality of K. Then, x satisfies

1 − K

2n−1 = um(y) > um(x) ≥ um(y) − 1

2n−1 = 1 − K + 1

2n−1 ,

which together with 1 − (K + 1)/(2n−1) < un(x) < 1 − (K/2n−1) (maximality of K) implies

|um(x) − un(x)| ≤ 1

2n−1 < ε

as was to be shown.

Extending f (0, t) for t > t1. We will consider two types of t > t1. We will consider first a t∗ > t1 such that (x̄, t∗) �
(x, 0) and then the case in which t∗ is such that (x, 0) � (x̄, t∗).

For any t∗ > t1 such that (x̄, t∗) � (x, 0) we define, as in Steps 1 − n a sequence of times sn such that 0|s1|t∗ and
inductively 0|sn|sn−1. This defines an infinite sequence of times sn, since

• whenever t is not equivalent to 0, there exists s < t such that 0|s|t;
• 0|s|t implies that s is not equivalent to 0;
• t∗ is not equivalent to 0, since t1 is not equivalent to 0.

Lemma 5. The sequence {sn} converges to some sL which is equivalent to 0.

Proof. Since the {sn} sequence is decreasing, it must have a limit, so suppose that contrary to the statement of the
lemma, sn → sL with sL not equivalent to 0. Let x and y be such that

(x, 0) ∼ (y, s1) and(x, s1) ∼ (y, t), (5)

which exist by definition of s0. Let xn and yn be such that (xn, 0) ∼ (yn, sn+1) and (xn, sn+1) ∼ (yn, sn). Again, such
xn and yn exist by definition of sn+1. Since X is compact, we have that there exists convergent subsequences of xn and
yn, xnk

→ xL and ynk
→ yL so that by continuity

(xnk
, 0) ∼ (ynk

, snk+1 ) ⇒ (xL, 0) ∼ (yL, sL).

Since sL is not equivalent to 0, we must have yL�txL for all time periods t.
We also have (xn, sn+1) ∼ (yn, sn) for all n, so that by continuity, (xL, sL) ∼ (yL, sL) which implies yL∼txL for all

time periods t, contradicting our previous assertion that yL�txL. �

By Lemma 4 there exists an n such that sn ∈ [0, t1], and we thus let f (0, t∗) = 2nf (0, sn). From Steps1-n we know
that u and f (0, t∗) represent preferences on X × {0, t∗}.

We now consider the case in which t∗ is such that (x, 0) � (x̄, t∗). Since preferences are continuous one can find a
maximal t̄ such that (x, 0) ∼ (x̄, t̄). Such a t̄ has already been assigned an f (0, t̄). We now let f (0, t∗) = f (0, t̄) − t∗ + t̄.
The structure of f beyond t̄ doesn’t really matter because all elements of X in 0 are strictly better than all elements of
X in t∗.
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4.1.2. Defining f (t, s)
One can use irrelevance to find an r such that (x, 0) � (y, r) ⇔ (x, t) � (y, s), so that f (t, s) = f (0, r).

4.2. Proof of Theorem 2

By the von-Neumann Morgenstern Theorem (see for example the version in Dubra et al., 2004) there exists a
v : Z → [0, 1] such that x�0y if and only if Exv ≥ Eyv. Now we define a preference relation R on [0, 1] × T by
(j, t)R(k, s) if and only if there exist x and y such that (x, t) � (y, s), Exv = j and Eyv = k. We will now show, in
Lemma 5, that � is a time preference that satisfies TD, WTT, O and Irrelevance if and only if R is a time preference
that satisfies TD, WTT, O and Irrelevance. Then, the proof will be complete since we then have that whenever � is a
time preference that satisfies TD, WTT, O, Irrelevance and Independence,

(x, t) � (y, s)
def. of R⇔ (Exv, t)R(Ey, s)

L.5,Th.1⇔ u(Exv) ≥ u(Eyv) + f (t, s)

for all (x, t), (y, s) ∈ X × T , and f (·, t) is increasing; f (s, t) + f (t, s) = 0; 2f (r, s) = f (r, t) whenever f (r, s) = f (s, t).

Lemma 6. The binary relation� is a time preference onX × T that satisfies Time Discounting, Weak Time-Transitivity,
Orthogonality and Irrelevance iff R is a time preference on [0, 1] × T that satisfies Time Discounting, Weak Time-
Transitivity, Orthogonality and Irrelevance.

Proof of Lemma 5. Before proceeding with the proof of the main point of the Lemma, we note the following fact.
for every j, k ∈ [0, 1] such that (j, t)R(k, s), the x and y such that (x, t) � (y, s), Exv = j and Eyv = k can be taken
as linear combinations of a fixed �0- maximal x̄ and �0-minimal x. The standard construction of the utility function
in the von-Neumann Morgenstern Theorem implies that if Exv = j, then x∼0jx̄ + (1 − j)x. Therefore, we assume
without loss of generality that x = jx̄ + (1 − j)x.

Step 1. From � to R. Suppose � is a time preference that satisfies TD, WTT, O and I.
R is a time preference. Completeness. For any (j, t), (k, s) ∈ [0, 1] × T there are x, y ∈ X such that Exv = j

and Eyv = k, and since (x, t) � (y, s) or (y, s) � (x, t) must hold, by definition of R, we obtain that (j, t)R(k, s)
or (k, s)R(j, t) must hold.

Continuity. Fix (j, t) ∈ [0, 1] × T and take any sequence (kn, sn) ∈ [0, 1] × T , with (kn, sn) → (k, s) and
(kn, sn)R(j, t) for all n. We then have that

(knx̄ + (1 − kn)x, sn) → (kx̄ + (1 − k)x, s)

and

(knx̄ + (1 − kn)x, sn) � (jx̄ + (1 − j)x, t)

⎫⎪⎬
⎪⎭ ⇒

continuity of�
(kx̄ + (1 − k)x, s) � (jx̄ + (1 − j)x, t)

so that (k, s)R(j, t). The case of the lower contour set is treated similarly.
Transitivity of R0. Define R0 as jR0k iff (j, 0)R(k, 0). Pick any j, k, l ∈ [0, 1] such that jR0kR0l. We then

have

(j, 0)R(k, 0)R(l, 0) ⇔

⎧⎪⎨
⎪⎩

∃x, y, z with Exv = j, Eyv = k, Ezv = l

and

x�0y�0z

⎫⎪⎬
⎪⎭ ⇒

transitivity of�0
(x, 0) � (z, 0) ⇒ jR0l

as was to be shown.
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Equality of static preferences: R0 = R1 = R2 = . . . We have

jR0k ⇔ (j, 0)R(k, 0) ⇔

⎧⎪⎨
⎪⎩

∃x, y with Exv = j, Eyv = k

and

x�0y

⇔
Exv = j, Eyv = k

and

x�ty

⎫⎪⎬
⎪⎭ ⇔ jRtk

as was to be shown.
R satisfies Time Discounting. Define P to be the strict part of R and I its indifference: (j, t)P(k, s) if and

only if (j, t)R(k, s) and not (k, s)R(j, t); (j, t)I(k, s) iff (j, t)R(k, s) and (k, s)R(j, t). Suppose j, k, l ∈ [0, 1]
and s, t, v ∈ T , with v ≤ t and assume (j, t)P(k, s). We have that for some x and y, (x, t) � (y, s) and since �
satisfies TD, (x, v) � (y, s), so that (j, v)P(k, s). The case of (j, t)R(k, s) is treated similarly, establishing that
R satisfies TD.

R satisfies Orthogonality. Take j, k ∈ [0, 1] and s, t ∈ T and x, y such that Exv = j, Eyv = k. Then since �
satisfies Orthogonality,

(j, t)R(j, s) ⇔ (x, t) � (x, s) ⇔ (y, t) � (y, s) ⇔ (k, t)R(k, s).

R satisfies Irrelevance. For all i, j, k, l ∈ [0, 1] find w, x, y, z ∈ X such that Ewv = i, Exv = j, Eyv = k and
Ezv = l. Let r, s, t, v ∈ T, r < s, t < v:

(k, r)I(l, s)

and

(k, t)I(l, v)

⇒
(y, r) ∼ (z, s)

and

(y, t) ∼ (z, v)

⇒
(w, r) � (x, s) ⇔ (w, t) � (x, v)

and

∀p ∈ [r, s]∃q ∈ [t, v] such that (w, r) � (x, p) ⇔ (w, t) � (x, q)

⇒
(i, r)R(j, s) ⇔ (i, t)R(j, v)

and

∀p ∈ [r, s]∃q ∈ [t, v] such that (i, r)R(j, p) ⇔ (i, t)R(j, q)

so that R satisfies Irrelevance.
Step 2. From R to �. The proof is analogous and is omitted, so the proof of the Lemma is complete. �
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