Preferencias

Sea X el espacio de los bienes de consumo, y sea > una relaciéon de preferencia, es decir, = C X x X.

Interpretaremos (z,y) € = como x débilmente preferido a y, y escribiremos x = .

Ejemplo 1 (a) Sea X ={1,2,3} y =={(1,1),(1,2),(1,3),(2,3),(3,1)}.
(b) Sea X el conjunto de todas las personas en el mundo, y > la relaciéon “tienen al menos un nombre en
comtn.” Asi, por ejemplo, tenemos que el par (Gabriel Omar Batistuta, Gabriel Garcia Mérquez) € =
(c) Sea X = R, el conjunto de los nmimeros reales y » la relacién “mayor o igual que”, es decir ==> .
(d) Sea X =R,y = larelacién: = ysi |z —y| > 1.
(e) Sea X =R, y = la relacién: z > y si  — y es miiltiplo de 2.

A partir de la relacién de preferencia »= definimos ~ (indiferencia) como
T~NYSTEZYyYyYs- T

es decir, = es indiferente a y si, y sélo si, x es débilmente preferido a y y y es débilmente preferido a x.
También definimos > (estrictamente preferido) como

T-ySTEZyynoy s x

es decir, x es estrictamente preferido a y si, y sélo si, x es débilmente preferido a y y y no es débilmente
preferido a x.

Decimos que la relacién de preferencia = es:

reflexiva si, y sélo si, para todo z € X, x > z. Es decir, todos los elementos son comparables consigo
mismos.

completa si, y sélo si, para todo z,y € X
rZydy=zx

es decir, todos los elementos en el espacio de los bienes de consumo son comparables: dadas dos canastas
Ty y, x es mejor que y 6 y es mejor que x. Para ver que las preferencias no tienen porqué ser completas,
imaginemos a una persona que tiene que decidir entre dos trabajos con distintos sueldos, ambientes de
trabajo, tipo de trabajo, etc, y a quien le resulta imposible decidir. Al final, la persona tomard una decisién
(porque debe elegir) pero eso no quiere decir que la persona “prefiera” lo que eligié. A veces se confunde la
completitud de las elecciones con completitud de las preferencias. Por ejemplo, si a mi me dan a elegir entre
x e y, alguno voy a tener que elegir, pero no quiere decir que yo realmente “prefiera” el que elegi. Puede que
2 e y sean incomparables para mi. A veces los economistas dicen: “las preferencias tienen que ser completas.
Si no lo fueran, a la gente le pasaria como al burro aquél que perdido en el desierto se encuentra con dos
baldes de agua, e incapaz de elegir porque sus preferencias no eran completas, se muere de sed.” Al burro
pueden resultarle incomparables los dos baldes de agua, y atin asi ser capaz de elegir. Que las elecciones
sean completas no quiere decir que las preferencias lo sean.

Ejercicio 2 Mostrar que si = es completa, también es reflexiva.

Ejercicio 3 Sea = una relacién binaria en X. Demuestre que si ~ es completa, entonces no existen x e y
en X tales que x > y. Demuestre también que si > es completa y no existen = e y tales que = > y, entonces
~ es completa.



Decimos que una relacién de preferencias es transitiva si, y sélo si, para todo x,y,z € X
TZYyyYyrz=x -z

es decir, si & es mejor que ¥ y y es mejor que z, x es mejor que z. Por méds que parece una propiedad “obvia”
que deben satisfacer las preferencias de una persona razonable, aca van cuatro cuentos que pueden minar
esa intuicion.

Cuento A. Una persona es indiferente entre un café sin aziicar, y un café con un grano de azicar; indiferente
entre esto ultimo y uno con dos granos de azticar; etc, etc, pero que prefiere un café con una cucharadita de

azicar a uno sin azucar. Estas preferencias no son transitivas.

Ejercicio 4 Mostrar porqué el ejemplo del aziicar viola transitividad.

Cuento B. Esto es de Kahneman y Tversky (1984). A cada uno de los individuos de un grupo se le dice:

Estas por comprar un equipo de musica por U$S 125 y una calculadora por U$S 15. El vendedor
te dice que la calculadora estd “on sale” a U$S 10 en la otra sucursal de la tienda, que queda a
20 minutos caminando. El equipo de miisica estd al mismo precio. ;Irias a la otra tienda?

Sucede que la fraccién de individuos que responden que irfan a la otra tienda es mucho mayor que la
fraccién que dice que irfa cuando se cambia la pregunta de tal forma que el descuento de U$S 5 es en el
equipo de misica. Lo “raro” de eso es que la fraccién “deberia” ser la misma, pues el viaje y el ahorro en
ambos casos son iguales. De hecho, uno espera que la respuesta a la siguiente pregunta sea indiferencia

Se agotaron las calculadoras y los equipos de audio en esta tienda. Tenés que ir a la otra tienda
a comprar ambas cosas, y recibirds un descuento de U$S 5 en alguno de los items. jTe importa
en cudl?

La violacién de transitividad queda clara si ponemos

x — Ir ala otra tienda y recibir el descuento en la calculadora
y — Ir ala otra tienda y recibir el descuento en el equipo de audio

z —  Comprar las dos cosas en la primera tienda.

Las dos primeras elecciones de la gente demuestran que = > 2z y z > y, pero la tltima demuestra que = ~ y.
Eso viola transitividad, pues si las preferencias cumplieran transitividad, obtendriamos: de x = z y z = v,
que z > y; luego, si tuviésemos y = x, con = > z tendrfamos y > z, que contradice z > y, por lo que
deducimos que x > y, y eso contradice x ~ y.

Cuento C: A una familia de tres personas se les pregunta: ;Qué prefieren, ir al Cine o ir a una Parrillada?
Dicen C > P. Les preguntamos ahora Qué prefieren, ir a la Parrillada, o jugar al Nintendo? Dicen P > N.
Finalmente les preguntamos ;Qué prefieren, jugar al Nintendo, o ir al Cine? Dicen N > C. Parece que las



preferencias son no transitivas, y por tanto “irracionales”. Sin embargo, si las preferencias del padre, madre

y nino son
P -~ ,N»=,C
C = wP=m N
N » ,C>,P

y se decide por votacién qué hacer, obtenemos las elecciones del principio. Este “problema” se llama la
paradoja de Condorcet.

Cuento D: A veces podemos observar intransitividades en las elecciones, debido a un cambio en gustos.
Para un potencial fumador, las preferencias sobre cantidades de cigarrillos diarios pueden ser

1>0>40
pero una vez que empieza a fumar uno por dia (demostrando 1 > 40), sus preferencias pueden cambiar a
40>-1>0

y cuando empieza a fumar 40 por dia, observariamos 40 > 1. Juntando ambas observaciones tenemos 40 >
1 > 40.

Ejercicio 4. Deberes. En el Ejemplo 1 determinar si cada relacion satisface cada una de las siguientes

propiedades: completa, transitiva y reflexiva.

Ejercicio 5 Para este ejercicio dibuje, para cada relacién de preferencias que se defina, el conjunto de los y
que son mejores que un x particular (digamos « = (1, 1), por ejemplo). Le facilitars el trabajo.

Parte A. Una relacién de preferencias = sobre X = Ri estd definida por = = y < z120 > y1y2 + 1.
Determine si = es completa y transitiva.

Parte B. Definimos otra relacién de preferencias =* sobre X = Ri mediante x =% y < 129 > y1y2 + 1.
Luego, definimos = >=* y si y sélo si no se cumple y >=* x; a partir de =* definimos = ~* y como es habitual
(x =* y & y =* x). Determine si >* es completa y transitiva. Determine si =* es completa y transitiva.

*

Determine si ~* es completa y transitiva.

Ejercicio 5. Deberes. Una relacién binaria > es:

negativamente transitiva si para todo x,y,z € X, (z,y) ¢= y (v, 2) ¢> implican que (z,z) ¢~ .
asimétrica si para todo z,y € X, x > y implica que (y,z) ¢> .

(a) Dar un ejemplo de una relacién negativamente transitiva.

(b) Dar un ejemplo de una relacién asimétrica.

(c) Dar un ejemplo de una relacién negativamente transitiva que no sea asimétrica.

(

d) Dar un ejemplo de una asimétrica que no sea negativamente transitiva.

Ejercicio 6: (del Mas-Colell et. al.) Una relaciéon R C X x X para algin X es simétrica si xRy implica
yRx para todo x,y € X. Demostrar que si una relacién de preferencias = es completa y transitiva, entonces
(i) = es irreflexiva (es decir, para todo z, (z,z) ¢>) y transitiva

(ii) ~ es reflexiva, transitiva y simétrica.

(iii) si x = y = z, entonces z > z.



Una cosa importante del ejercicio anterior, que se va a repetir en muchos ejercicios mas adelante, es la
siguiente. Si les pido que demuestren que > es transitiva, tienen que asumir que x > y y también que y > z,
para luego demostrar z > z. Es algo bastante obvio, pero no se puede demostrar que se cumple el axioma
si no se asume que x > y y también y > z. Como ejemplo adicionales de este principio basico (“si tengo
que demostrar que un axioma de la forma a = b se cumple, si se cumple el axioma tal, debo asumir que
se cumple el axioma tal, y ademds asumir a. Luego debo demostrar que b se cumple.”) tenemos el siguiente
ejercicio.

Ejercicio 6 Preferencias sobre conjuntos. Sea X un conjunto finito y sea = una relacién de preferencias
sobre X. Sea P el conjunto de todos los subconjuntos no vacios de X, y definimos en P una relacién de

preferencias =* de la siguiente manera: para A, B € P,
A »* B <& paratodoy € B,3x € A tal que z = y (el x puede ser distinto para cada y). (1)

Parte A. Muestre que si >~ es completa y transitiva, entonces >* es completa y transitiva.
Parte B. Muestre que para A,B € P, A>* AU B si A >* B y las preferencias > son reflexivas.
Parte C. Suponga que X = {churrasco, pasta, helado} y que una persona tiene preferencias =’ sobre P
(los subconjuntos no vacfos de X) que satisfacen (1) {c¢} =’ {p} =’ {h} (tiene hambre, y si va a comer sélo
una cosa, que sea churrasco) y (2) {p} =" {¢,h} =’ {p,h} (no quiere engordar, y si puede comprometerse a
comer sélo pasta prefiere eso antes que churrasco y helado, o pasta y helado). ;Pueden estas preferencias
derivarse de unas preferencias = sobre X por el procedimiento en (1)? Demuestre que no, o de un ejemplo
de > que genere >’ .

En el ejercicio que viene procedemos “al revés” que lo normal: nos dan una relacién binaria que inter-

pretamos como preferencia estricta, y a partir de ella definimos preferencia débil e indiferencia.

Ejercicio 7 Sea P una relacién binaria en un conjunto X (es decir, P C X x X). Definimos xRy si y s6lo
si no es cierto que yPx.

Parte A. Muestre que R es completa si y sélo si P es asimétrica.

Parte B. Muestre que R es transitiva si y sélo si P es negativamente transitiva.

Ejercicio 8 Demostrar que > es negativamente transitiva si y sélo si, para todo x,y,z € X, z > z implica
que para todoy, z =y 6y = z.

Ejercicio 9 Sea > una relacién de preferencias en R? que no es completa, pero es transitiva y reflexiva.
Supongamos que la extendemos a otra relacién =* para hacerla completa de la siguiente manera: = =* y <
x=yo['x=y& Ty =z Esdecir, si x =y, decimos z =* y, y si & no es comparable con y, los declaramos
indiferentes, x ~* y. Demuestre o de un contraejemplo para la afirmacién “>* es transitiva”.

Ejercicio 8. Presentamos ahora un falso teorema, con una demostracién incorrecta. El ejercicio es encontrar

un error en la demostracién, y un contraejemplo al teorema.
Falso Teorema: Si una relacién binaria B C X x X es simétrica y transitiva, entonces es reflexiva.

Demostracién Incorrecta: Tomo xz € X y cualquier y € X tal que zBy. Por simetria, obtengo yBz.
Ahora, xBy y yBx implican, por transitividad, Bz, como queriamos demostrar.

Parte A: Encontrar el error en la demostracion.



Parte B: Encontrar un contraejemplo al teorema. Es decir, encontrar o inventar una relacién B tal que B

es simétrica y transitiva, pero no reflexiva.

Ejercicio 9. R es circular si para todo z,y,z € X, xRy y yRz implican zRx para todo z,y, z. Demostrar
que R es reflexiva y circular si y sélo si es reflexiva simétrica y transitiva.

Ejercicio 10. Sea X un conjunto cualquiera, sea = una relacién binaria en X y sea ~ la relacién de
indiferencia definida a partir de > .

Parte A. Demuestre que si ~ es completa entonces no existen z,y € X tales que = > y.
Parte B. Demuestre que si > es completa y no existen x,y € X tales que x > y, entonces ~ es completa.
Ejercicio 11. Deberes. Sean X un conjunto arbitrario y R; y Rs dos relaciones binarias en X.

Parte A. Demuestre o encuentre un contraejemplo: si R; y Ry son completas, entonces R = R; N Ra es

completa.
Parte B. Demuestre o encuentre un contraejemplo: si R; y Ro son transitivas, entonces R = R; N Rs es

transitiva.

Ejercicio 10 Deberes. Sea X un conjunto arbitrario y sea R cualquier subconjunto de X x X. Se dice
que otro subconjunto S de X x X es una extensiéon de R si R C S. Se define a la extensién transitiva
mas chica de R como la interseccién de todas las extensiones transitivas de R. Es decir, si definimos i
como el conjunto de todas las extensiones transitivas de R, Eg = {S : S es una extensién transitiva de R},
la extension transitiva més chica de R es la relacién binaria

R = ﬂSGSR 5 2)

Parte A. Demuestre que si £ es un conjunto arbitrario, no vacio, de relaciones binarias que son extensiones

de R, entonces su interseccién es una extensiéon de R.

Parte B. Demuestre que X x X es una extension transitiva de R.

Parte C. Usando las Partes A y B, demuestre que R es una extensién transitiva de R.

Parte D. Demuestre que si S es cualquier extensién transitiva de R, entonces Ry C S.

Parte E. Demuestre que xRy si y sélo si existen x1, x2, ..., T, tales que x = z1, y =z, y v1Rz2R...Rxy,.

Dada una secuencia {z,};° = {z1,22,...} en R™ decimos que {z,};" converge a z € R™, y escribimos

Zn, — , sl para todo € > 0 existe un N tal que ||z, — z|| < & para todo n > N.

Ejercicio 11 Demuestre que la secuencia -5 + = converge a 0.
n n



Una relacién de preferencias = C X x X para X C R! es:

continua si para todo z € R/, los conjuntos U, = {y: y = 2} y L, = {y: z = y} son cerrados (es decir, si

Yn = x para todo n y y, — y implican y > x, y similarmente para = > y,).
mondétona si y > x (es decir y; > x; para todo i) implicay =z yy >z =y > x.

estrictamente mondétona si y > z (es decir y > x y x # y) implica y > z. Como siempre, z > y quiere
decir que para todo i =1,2,...,1, x; > y;.
localmente no saciable si para cada z € X y cadae > 0 existe un y € X tal que ||z —y|| <ey y > z.

Ejercicio 13. Deberes. Sea X = RJLF. Demuestre que si una relacién de preferencias es monétona, entonces
es localmente no saciable.

Ejemplo. Preferencias Lexicograficas. Sea X = Rﬁ_. Definimos la relacién de preferencias de la
siguiente manera: Va,y € X,
1>
TrLY &S o)
1 =y1 &z >y

Mostramos que no satisface continuidad. Tomamos z = (1,1), y

1
Un = (1 + —, 0) .
n
Para cada n, y,, = x, pero no es cierto que y = lim, . yn, = (1,0) = .

Ejercicio 14. Deberes. Un conjunto C C Ri es convexo si para todo z,y € C, y todo a € [0,1],
az + (1 — a)y € C. Una relacién de preferencias = en X = R es convexa si el conjunto U, = {y : y = z}
es convexo para todo z y es estrictamente convexasiy # z,y = 'y z = x implican que ay+(1 —a) z = «
para todo z,y,z € X y a € (0,1).

Parte A. Demuestre que si una relacién de preferencias es convexa, entonces para cualquier conjunto convexo

C, el conjunto {z € C': x > y para todo y € C} es convexo.

Parte B. Demuestre que si una relacién de preferencias es estrictamente convexa, entonces para cualquier
conjunto convexo C, el conjunto
{x € C:z >y para todo y € C}

consiste de un solo elemento.

Ejercicio 12 Sea X = {1,2,3,4} y sea R = {(1,2),(2,3),(3,4)}. Si = es transitiva y R C =, liste tres

pares (x,y) que no estdn en R, que tienen que estar necesariamente en > .

Una relacién de preferencias = en X = RJLr es homotética si z ~ y si y sélo si axr ~ ay para todo
z,ye Xya>0.

Ejercicio 16. Determine cuédles de las siguientes preferencias son homotéticas para X = Ri.

Parte A. x = y si y sélo si > y (como siempre, x > y quiere decir que para i = 1,2 tenemos x; > y;).



Parte B. z > y si y s6lo si &1 (1 +x2) > y1 (1 + y2) .
Parte C. z = y si y sdlo si afzy~* > yfys .

Parte D. z > y si y sélo si axy + bxs > ay; + bys para a,b > 0.

Parte E. x = y si y sélo si axy + bxs > cy; + dys para a,b,c,d > 0.

Ejercicio 13 Sea X un conjunto y R C X x X. La inversa de R, es la relacién R~ = {(z,vy) : yRz}.

Parte A. Si R es antisimétrica (yRx y también xRy implican = = y), ;(R~! también? Si R es transitiva,
JR~! también?

Parte B. Muestre que R es simétrica si y sélo si R = R™!.

Ejercicio 14 Si Ry y Rs son dos relaciones binarias en X, la composicién de Ry y R5 es la relacién
Ry o Ry = {(z,y) : existe z € X tal que zR;z & 2Roy}

Muestre que R es transitiva si y sélo si Ro R C R.

Ejercicio 15 Sea X = RJLr para algiin L. Una relacién de preferencias = es: divisible si z = y implica
ax = ay para todo a > 0, y para todo z,y € X; aditiva si > y y w > z implican  + w >~ y + z, para todo
w,xz,y,z € X. Demuestre que si una relacién de preferencias > es Aditiva y Divisible, entonces es Convexa.

Ejercicio 16 Sea D C X x X una relacién binaria dada por D = {(z,z) : z € X}. Una relacién binaria R
es: un orden parcial si es transitiva, reflexiva y antisimétrica (zRz y zRx implican z = z); una relacién

de equivalencia si es transitiva, reflexiva y simétrica (zRy implica yRz).
Parte A. Muestre que D es un orden parcial y que también es una relacién de equivalencia.
Parte B. Muestre que D es la dnica relacién binaria que es un orden parcial y una relacién de equivalencia.

Parte C. Muestre que X x X (que es una relacién binaria) antisimétrica si X tiene un solo elemento, y que
si X tiene méds de un elemento, no puede ser antisimétrica.

Ejercicio 17 Determine cuédles de las siguientes preferencias son convexas. Si una preferencia es convexa,

demuestre su respuesta. Si no lo es, proporcione un contraejemplo.
Parte A. x = y < max {z1,z2} > max {y1,y2}
Parte B. © = y © min {x1,z2} > min {y1,y2}
Parte C. v =y & 23 + 23 > yi + 3
Parte D. Paraa >cyb<d
x ¥ y < min{az; + bxe, cxy + dro} > min {ay; + bya, cy1 + dya}.
Parte E. Paraa >cy b<d

z ¥ y < max {azx; + bxe, cxy + dro} > max {ay; + bya, cy1 +dya}.



Ejercicio 18 Suponga que X = {I,C, D}, “naturalmente” ordenadas de izquierda a derecha con I més a
la izquierda que C' (centro) mds a la izquierda que D (derecha). En la sociedad hay tres individuos:

e Karl, con preferencias (completas y transitivas) >k dadas por [ =, C = D
e ¢l Extremista, con > g definidas mediante D =g I =g C
e ¢l Moderado, con »=); dadas por C =y D = I

Las preferencias del grupo se determinan por votacién: si dos individuos prefieren una alternativa a otra,

el grupo la declara preferida.

Parte A. Muestre que las preferencias del grupo no son transitivas (ya lo vimos en clase, es la paradoja de
Condorcet).

Parte B (Median Voter Theorem. Este ejercicio muestra por qué muchas veces los candidatos
politicos anuncian la plataforma que le gusta al votante medio, o mediano). Suponga ahora que
X =R, y que cada uno de 2n + 1 individuos tienen preferencias completas y transitivas que satisfacen la
siguiente propiedad: para cada individuo i, existe un z} € X tal que x} >; = para todo = # z} y

i <w <y
o =T ;Y.
y<zx<zf

Es decir: z] es lo mejor, y cuanto més lejos de x}, peor. Suponga que 7 < x5 < ... < z3, 1. Muestre que

x;, 11 le gana a cualquier otra alternativa en una votacion.

Ejercicio 19 (Basado en Mas Collel). Sea el espacio de consumo X = R? . Dado A C X , podemos
tomar este conjunto como un nuevo espacio de consumo. Definimos las preferencias 7|4 como las prefer-

encias =~ restringidas al conjunto A de la siguiente manera: dados x,y € A,
TZAY =TTy

O, de otra manera, si tomamos las preferencias como subconjunto del producto cartesiano X x X, es decir,

Z CRY xR} definimos las preferencias restringidas a A como subconjunto ZZj4C A x A :
Zja=Z N(Ax A)

Con estas definiciones, tomemos un conjunto Y C R’} compacto con las preferencias 77 sobre R que son
completas, transitivas, monétonas y continuas.

Parte A. Pruebe que existe z* € Y tal que z* 7 y para todo y € Y. (Sugerencia: Utilice los teoremas
de Wold y el teorema de Weierstrass, que dice que toda funcién continua en un compacto tiene maximo y
minimo absoluto).

Parte B. Usando la parte anterior, pruebe que las preferencias 7y sobre Y no son localmente no saciables,
pero sin embargo son monétonas.

Parte C. Sea B CY C R} un conjunto abierto. Pruebe que las preferencias 7|z sobre B son localmente
no saciables. (Sugerencia: utilice la definicién de conjunto abierto que dice que A es abierto si para todo



a € A existe un radio r > 0 tal que la bola B (a,r) C A; combine eso con la monotonia de las preferencias
sobre R”)

Parte D. ;Encuentra algo extranio en las conclusiones de las Partes B y C? ;Contradice algo de lo que se

ha visto en clase? En caso contrario: jporque no?
Ejercicio 24. Sea el espacio de consumo X = Ri y preferencias 77, sobre X dadas por la siguiente definicién:

(T1,22) Z (W1,92) = 21 >29y1 6 T2 >y

Parte A. Dado z = (z1,22) € Rf_ caracterice y realice un bosquejo del conjunto de supranivel de z, definido
como A® ={yeR% :y Z x}

Parte B. Dado © = (z1,22) € Ri caracterice y realice un bosquejo del conjunto de infranivel de z, definido
comoAz:{zeRi:xzz}

Parte C. Dado = = (z1,x2) € Ri caracterice y realice un bosquejo de la “curva de indiferencia que pasa
por z” definida como C, = A, N A*. Probar que y ~ ¢ <= y € C,. (Nota: Que se llame curva de
indiferencia NO quiere decir que tenga forma de curva. Bien podria ser un conjunto cualquiera, una regién

no unidimensional de R% )

Parte D. En base al resultado anterior, argumente por qué la construccién que se hace en el teorema de
Wold no podria hacerse en el caso de estas preferencias.

Parte E. ;Son estas preferencias completas? ; Transitivas?

Ejercicio 20 Sea X un espacio de consumo cualquiera, sobre el cual existen preferencias ~C X x X.

Parte A. Pruebe que si las preferencias 7~ son completas y transitivas, entonces son negativamente transi-

tivas.

Parte B Muestre que si para una relacién =, se da que > es negativamente transitiva, entonces > es

transitiva.

Ejercicio 21 Sea X ={1,2,3,4,5} ysea R={(1,2),(2,1),(4,5),(5,4)}.

Parte A. ;Es R completa? ;Transitiva?
Parte B. Encuentre la extension transitiva mads chica de R.

Ejercicio 22 La relacién > se define mediante (z,y) € > < x—y € R,. También, > se define como
la parte asimétrica o estricta de >: (z,y) € >< x > y pero no y > x. Recuerde que si Ry y Ry son dos

relaciones binarias en X, la composicién de R; y R es la relacién
Ry o Ry = {(z,y) : existe z € X tal que zR1z & 2Roy} .

Encuentre > o>y >0>.



Ejercicio 23 Para una relacién binaria =" en un conjunto X, defina dos nuevas relaciones binarias ="y ~/
a partir de ='como z =" ysiy % x, yx ~ ysiz > y & y =" x. Ahora defina = y ~ a partir de >'como
xr-ysiy#F o, yr~ysix it yy x# y. Demuestre que >’y > son equivalentes (son iguales: para todo x

ey, x = y< x> y)y demuestre que ~'y ~ también lo son.

max {z1, z2} max {y1,y2}
dibuje U (1,1) = {y : y = =} . Determine si las preferencias son: convexas; monétonas; estrictamente moné-

Ejercicio 1. Para las preferenciasen X = Ri definidas por x = y < ( 1T ) > ( Y1ty )

tonas; localmente no saciables; continuas; completas; transitivas. En cada caso provea una demostracién o
un contraejemplo.
Ejercicio 1. No son convexas: (1,0) = (%,%) y (0,1) = (%,%), pero %(1,0) + % (0,1) = (%,%) no es

33
41

por lo que x > y. No son estrictamente monétonas pues

preferido a ( ) . Son monétonas, pues si x > y, tenemos 1 + xa > y1 + y2 y max {1, 2} > max{y1, v}
, son mondétonas, pero no estrictamente. Son Localmente no saciables, continuas, no completas, y son

transitivas. **completar solucién**

Referencias: Parte de este material proviene de “Notes on the theory of choice,” de David Kreps. También

hay algo tomado de “Micoreconomic Theory,” de Mas-Colell, Whinston y Green. La cita de Kahneman y

Tversky es: “Choices Values and Frames,” American Psychologist 39, 341-50.
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Soluciones

Ejercicio 2: Tomemos cualquier z € X. Como > es completa, para todo y € X
zr-ydby = x.
Poniendo y = x obtenemos x > x.

Ejercicio 3. Si existen z e y tales que x > y, quiere decir que > y pero no y > x, que quiere decir que no
se cumple que x ~ y; eso demuestra que existen x e y para los cuales no se cumple ni z ~ y ni y ~ x, lo que
establece que ~ no es una relacién completa.

Tomo z e y cualesquiera. Como >~ es completa, puedo suponer sin pérdida de generalidad que = > y (si
y = x la demostracién seria andloga). Si no sucediera que y > z, obtendriamos x > y, que contradice que
no existen x e y tales « > y; por lo tanto debemos tener y > x, y por lo tanto = ~ y; eso establece que ~ es
completa.

Ejercicio 4: Para cada nimero natural 7, sea x; el café con ¢ granos de azicar. Tenemos que xg ~ 1 ~ ... ~
25438 (donde 5438 es el nimero de granos en una cucharadita de aztcar: obviamente el nimero particular no
importa). Por lo tanto, si tuviéramos transitividad, tendriamos z¢ = 543s. Por otro lado, tenemos que, como
T5438 = To, To no es débilmente preferido a w438, €s decir, no es verdad que xg = X543, una contradiccion.

Ejercicio 4: Reflexivas: (a) no, porque (2,2) no pertenece a la relacién. (b) si, porque cada persona
comparte al menos un nombre consigo misma. (c¢) si, porque es completa. (d) no, porque |2 — 2| =0, y por
lo tanto no pertenece a la relacién. (e) si, porque para todo nimero x, x — z = 0 que es miltiplo de 2.

Completas: (a) no, porque no es reflexiva. (b) no, porque Juan Dubra no comparte ningiin nombre con
George Bush. (c) si, porque para dos niimeros reales cualesquiera, x y z, 6 « es mayor o igual que z, 6 z es
mayor o igual que z. (d) no, porque no es reflexiva. (e) no, 3 — 2 no es multiplo de 2, y 2 — 3 no es multiplo
de 2, por lo que 3 y 2 no estén relacionados.

Transitivas: (a) no, porque 3 = 1 > 2 y sin embargo, (3,2) ¢~ . (b) no, porque Alberto Passarella
comparte un nombre con Luis Alberto Lacalle, y este tltimo comparte un nombre con Luis Viana. (c)
si, obvio. (d) no, porque 2 = 0 > 2, pero como ya vimos, (2,2) ¢= . (e) tomo = = y e y = z. Como
rr-ysr—y=2k paraunk; € Njey > 2z y—2z = 2ky, tenemos que t — 2z =z —y+y — 2z = 2k + 2k,,
por lo que = — y es par.

5.A. No es reflexiva, por lo que no es completa: para = (1,1), tenemos que 1.1 < 1.1 + 1, por lo que no
se cumple = > .

Es transitiva porque x = y = z implica x1x2 > y1y2 + 1 > 2120 + 2 > 2129 + 1, que asegura = >~ 2.
5.B. La relaciéon >* no es completa, ya que no se cumple que (1,1) >=* (1,1), pero si es transitiva pues
T ="y ="z implica x1x2 > Y192 + 1 > 2129 + 2 > 2129 + 1, que asegura = =" z.

La relacién >=* es completa, ya que para cualquier x e y, o se cumple z1x5 > y1y¥2 €n cuyo caso no
se cumple y1y2 > zi1x2 + 1 que implica * >=* y; o se cumple y1y2 > T1T2, en cuyo caso no se cumple
122 > y1y2 + 1, por lo que y >=* x. Las preferencias =* no son transitivas. Tenemos por ejemplo que

(0,0) =* (1,1) < = (1.1 > 0.0+ 1)

1
’ 3
(L= (5.3 e-(35>11+1) ®)

y sin embargo no se cumple (0,0) >=* (%, %) , ya que tenemos %% >0.1+1.
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La relacién ~* no es completa, pues (4,4) =* (1,1), por lo que no se cumple (1,1) =* (4,4) y eso implica
que no se cumple (1,1) ~* (4,4). Tampoco es transitiva, ya que ademds de (3) tenemos (1,1) =* (0,0) ya
2 %) =* (1,1) ya que no se cumple 1.1 > 2.2 4+ 1. Por lo tanto,
(0,0) ~* (1,1) ~* (%, %) , pero sin embargo no se cumple (0,0) ~* (%,%
pues %% > 0.0+ 1.

que no se cumple 0.0 > 1.1 + 1 y también (

) pues no se cumple (0,0) =* (%7 %)

Ejercicio 5.a: X cualquiera y == (). También > en R.

5.b: > en R.

5.c: > en R.

5.d: X cualquiera y == {(z,2)}. Otra posible es con X el conjunto de todos los hombres del mundo, y
xRy si y sélo si x es el padre de y. Es asimétrica porque si x es padre de y, y no es padre de x. No es
negativamente transitiva porque Kirk Douglas no es el padre de Tom Cruise (no kRt) y Tom Cruise no es el

padre de Michael Douglas (no tRm) y sin embargo, kRm.

Ejercicio 6: Empezamos con una més facil que la (iii): = > y > z implica > z. Sabemos que z > z,

entonces supongamos z = x. En ese caso, por transitividad, z = y, que sabemos que es falso.

Ejercicio 6.A. Para demostrar completitud tomo A y B en P. Debo demostrar que A =* B o B =* A. Si
no se cumple A >* B quiere decir que hay algin y € B tal que para ningiin z € A, tenemos z »= y. Como >
son completas, quiere decir que y > x para todo x € A, y eso implica que B >* A. Por lo tanto, se cumple
A =* B, o si no se cumple, se cumple que B =* A.

Para demostrar transitividad, tomo A =* B =* C. Debo demostrar que A =* C. Tomo un z cualquiera
en C. Como B >* C, sé que existe un y € B tal que y > z. A su vez, como A >* B, sé que para ese y en B,
existe un x € A tal que x > y. Por transitividad de >, obtengo que = > z. Por lo tanto, para cada z € C,
existe un z € A tal que x > z, y eso implica A =* C, como queriamos demostrar.

Ejercicio 6.B. Para cada y € AU B, tengo que y € Aoy € B. Siy € A, existe un z (=y) € A tal que
x = y;siy € B, como A >* B, sé que existe un x € A tal que z = y. En cualquiera de los dos casos, tengo
un x € A tal que x = y, por lo que A =* AU B.

Ejercicio 6.C. Como {p} =’ {c,h}, tendriamos que tener p = ¢, pero eso estarfa en contradiccién con
{c} =" {p} (ya que esto sucederfa si ¢ = p y no p = c).

Ejercicio 7.A. Asumimos que R es completa y que xPy; debemos demostrar que no se cumple que yPx.
Como z Py, no se cumple yRx; si se cumpliera y Pz, tendriamos que tampoco se cumpliria xRy, y por tanto
R no seria completa.

Mostraremos ahora que si P es asimétrica entonces R es completa. Supongamos que R no es completa,
para obtener una contradiccién. Eso quiere decir que existen x e y tales que no se cumple ni xRy (que quiere
decir que yPx) ni yRz (que quiere decir que zPy). Tenemos entonces que P no puede ser asimétrica.

7.B. Asumimos que R es transitiva y que no Py ni yPz, y debemos demostrar que no se cumple xPz. Que
no se cumplan zPy ni yPz implica que tenemos yRx & zRy, por lo que transitividad de R implica zRzx, y
eso quiere decir que no se cumple xPz.

Mostraremos ahora que si si P es negativamente transitiva, entonces R es transitiva. Como siempre,
debemos asumir que P es negativamente transitiva, xRy & yRz y debemos mostrar que xRz. En ese caso,
z,y,z € X, (z,y) €= v (v, 2) ¢> implican que (z,z) ¢~

P .
ny - yrx P neé;)tlan_lsz o Rz
yRz 2Py

como querfamos demostrar.
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Ejercicio 8. Lo haremos de dos formas. Una “coqueta”’ y una “ilustrativa”.
“Coqueta”’: Recordamos que

(1) a = b es equivalente a b ="a
(2) 7(c 6 d) es equivalente a ¢y d.

Entonces Vz,y, z

- (1
r = zéwtyéyizpog)

rr=ydy=z) = —‘(xiz)pogm

Tzzy) y 'Y=z = T(z=zz)
como querfamos demostrar.

“Tlustrativa”: Asumimos primero que > es negativamente transitiva y tomamos z > z. Si '(z > y) y
T(y = z), como > es negativamente transitiva, ' (z > z), lo que contradice x = z. Por lo tanto debemos
tener x = y 6 y > z, como queriamos demostrar.

Asumimos ahora que z > z = x = y6 y = z. La “hipédtesis” de negativamente transitiva es que ' (z * y)
y '(y = z), por lo que se viola la “tesis” que acabamos de asumir, por lo que debemos obtener 7 (z » z) que
era lo que queriamos demostrar.

Ejercicio 9. No es cierto que >=* es transitiva. Como contraejemplo tomamos = > en R2. En ese caso,

(2,-2) ~* (1,1) =" (0,0) ~* (2,—2)

pero de la parte (iii) del Ejercicio 6 de Preferencias sabemos que si « > y = z y las preferencias son completas
y transitivas, debemos tener x > z. Si tomamos z = (1,1), y = (0,0) y z = (2, —2) vemos que deberiamos
obtener (1,1) =* (2,—2), que no es cierto.

Otra variante serfa tomar, con las mismas preferencias = (0,0) ~* y = (=2,2) ~* z = (1,1). En ese
caso tenemos z = = y no x = z, por lo que z >* x.

En estos problemas de “verdadero o falso” si comienzan con la demostracion y se trancan, deberian probar
con un contraejemplo. Por ejemplo si empiezan con x >=* y =" z y asumen que eso es porque & = Yy =~ 2,
podrén usar la transitividad de > para concluir que x = z. Sin embargo, en los otros casos ya no se cumple.
Por ejemplo si  es incomparable a y, incomparable a z, no se deduce que = sea incomparable a z (y por
tanto  =* z). Para ilustrar, continuando con el ejemplo de = = >, (—2,2) es incomparable con (0,0)
que es incomparable con (—1,3). Sin embargo, (—1,3) > (—2,2).

Ejercicio 8.A Puede no existir ningin y tal que zBy.

8.B Sean X = {x,y,z} y== {(y,z) ’ (Z7y) ’ (yvy) ’ (Z,Z)} O por ejemplo, X = {x7y} con = = {(yvy)}

Ejercicio 9. Asumo primero que R es reflexiva y circular para demostrar que es simétrica y transitiva.
Simétrica:
TRy

. = (circular con el segundo y de abajo igual a z) yRz
(reflexiva) yRy

Transitiva: Asumo xRy e yRz, entonces por circularidad zRx, y como ya demostré simetria, xRz, como
querfamos demostrar.
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Ahora asumimos primero que R es reflexiva, simétrica y transitiva para demostrar circularidad. Tomo
x,y, 2 tales que xRy e yRz, y por transitividad obtengo xRz. Como R es simétrica obtengo zRz, como

queria demostrar.

Ejercicio 10.A. Si ~ es completa, tenemos que para todo x,y € X,

TZy
T~y & = no se cumple que = > y.
yr-x

10.B. Como > es completa, se cumple que para todo x e y, x = y o y = x. Si se cumpliera una y no la otra,
tendriamos que « > y o0 y > z, y eso no podria ser. Por lo tanto, debemos tener x ~ y, y demostramos que

~ es completa.

Ejercicio 11.A. Sean X = {a,b}, R1 = {(a,b),(a,a),(b,b)}y Rz = {(b,a),(a,a),(b,b)}. Tenemos que Ry
y Rs son completas y sin embargo R = Ry N Ry = {(a,a),(b,b)} no es completa. Otro ejemplo es X = R,
Ry =>y Ry =< . Tenemos que R; y Ry son completas y sin embargo R=>N <=%“=" = {(a,a) : a € R}

que es incompleta.

11.B. Supongo que xRyRz y debo demostrar que xRz. Tenemos que

cRy = rRy (1)
TRy (2)
yRz = ylaz (3)
yRoz (4)

De (1) y (3) y de la transitividad de R; deducimos que xzR;z. Similarmente, de (2) y (4) deducimos que
zRyz, por lo que Rz, como querfamos demostrar.

Ejercicio 12.A. Para todo (z,y) € R, tenemos que (z,y) € S, paratodo S € &, por lo tanto, (z,y) € (\gee S-

12.B. Para todo (x,y) € R, (z,y) € X x X, por lo que es una extensién de R. También, X x X es transitiva,
porque cualquier par (x,z) € X X X (no hay forma de falsar la transitividad).

12.C. Como X x X es una extension transitiva de R, el conjunto £r es no vacio, y por lo tanto, R es una

extensiéon de R. Falta ahora demostrar que Ry es transitiva. Tomemos para eso x,y, z € R tales que

rRyRz & (v,y),(y,2) € R= (v,y),(y,2) € S,VS € Er

§ traggitiva (x,2) € S,VSe€&p=(z,2)€ Ry = ﬂ S
SEERr

por lo que Ry es transitiva.

12.D. Para cualquier (z,y) € Rr, se cumple (por definicién de Ryp) que (z,y) € S,VS € Eg. Es decir,
(z,y) € S, siempre que S es una extension transitiva de R, como queriamos demostrar.

12.E. Definimos B como la relaciéon By si y sélo si existen z1,xs,...,T, tales que x = 1,y = =, ¥
z1 Rz R...Rx,,. Debemos demostrar que B = Ry y como siempre, demostraremos que uno estd contenido en

el otro y viceversa.
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B C Ry) Si (z,y) € B quiere decir que existen 1, ..., z, tales que
xRz R...Rz, Ry.

A su vez, xRx; implica que para cualquier S € Er tenemos xSz, y similarmente para x1Rzo y todos los
demés. Obtenemos por lo tanto
xSz1S...5%,Sy

y como S es transitiva, xSy. Hemos encontrado que: si (z,y) € By S € Er (es cualquier relacién de
preferencias transitiva tal que R C S, entonces xSy, o lo que es lo mismo, (z,y) € S. Deducimos que
entonces que

como queriamos demostrar.

Ry C B) Supongamos que (z,y) € Ry y debemos demostrar que (z,y) € B. Si (x,y) pertenece a la
interseccién, pertenece a todas las S que son transitivas y contienen a R. Por lo tanto, para completar la
demostracién alcanzard con demostrar que B es transitiva y contiene a R. Supongamos que zByBz. Eso
quiere decir que existen x1, zs, ...x, tales que

zRx 1 R...Rx,, RyRx ;41 R...Rx, Rz

y por lo tanto, Bz, demostrando que B es transitiva. Que contiene a R es obvio y se omite su demostracion.

Ejercicio 11. Dado ¢ > 0, tenemos que para N > %,

1 1 1 1 1 1 2
+ = -0=5+—=5<—5+—5=—<

[\)

n?2 n3 n?2 n3 " n?2 n?2 n2 - N2

por lo que # + # converge a 0.

13. Debo demostrar que para todo x y € > 0 existe un y tal que ||z —y|| < € y y > x. Por supuesto
tendremos que usar monotonia. Para que la monotonia nos sirva, y debe estar al noreste de z, y también
debe estar cerca. Cualquier y con esas propiedades nos servird. En particular, para e = (1,1,...,1) € RL,

£ lz—yll=5<e
y=z+ _—=e= { monoton?a

tenemos que

2L y>cz = y==z

como querfamos demostrar.

Ejercicio 14.A. Tomo z,z € {x € C: z = y para todo y € C}. Como C es convexo, ax + (1 —«a)z € C
para todo « € [0,1], y como = son convexas, x = y para todo y en C, y z = y para todo y en C, implican
ax + (1 — ) z = y para todo y € C, como queriamos demostrar.

14.B. Supongo que existen x y z, con x # z tales que z,z € {x € C: z = y para todo y € C}. Como C' es
convexo, ax + (1 — a) z € C para cualquier a en (0,1), y como las preferencias son estrictamente convexas,
tenemos que

= }:>ax+(1—oz)z>x
=
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contradice x € {z € C': z = y para todo y € C}.
Ejercicio 12. Deben estar los pares (1,3),(1,4) vy (2,4).
Ejercicio 16.A. Son homotéticas: x ~ y si y sélo si x =y si y s6lo si ax = ay siy sélo si ax ~ ay.

16.B. No son homotéticas. Tomamos z = (2,0) e y = (1,1). En ese caso tenemos = ~ y pero para o = 2,
tenemos que 2y = (2,2) = (4,0) = 2z pues no es cierto que 2z (1 4+ 2x2) =4 > 6 = 2y; (1 + 2y2) .

16.C. Son homotéticas pues

l—«

wy e afay T =YYy e bafay T = byfys ™ & (baa)® (b)Y = (byr)” (by2)' T & b ~ by.
16.D. Es un caso particular de la Parte E.

16.E. Son homotéticas pues para todo k > 0, tenemos que = ~ y si y sélo si ax; 4+ bxy = cy; + dys si 'y sélo
si akzq + bkxe = ckyy + dkyo si y sélo si kx ~ ky.

Ejercicio 13.A. Es cierto que R antisimétrica implica que R~! también es antisimétrica. Supongamos que
R es antisimétrica pero R~! no y llegaremos a una contradiccién. Si R~'no es antisimétrica = 3 x, y tales
que 2R~y & yR~'z con = # y. Como xR~ 'y, tenemos yRx y como yR ™'z también tenemos xRy pero eso
implica (como R es antisimétrica) que x = y, lo que contradice x # y.

Para demostrar que si R es transitiva R~! también lo es, debemos demostrar que si existen z,y & z tales
que zR~'y & yR 'z entonces tendremos zR~'z. Si 3 yR~'z y 2R~ 'y entonces se cumplen xRy e yRz;
como R es transitiva, Rz y por lo tanto 2R~ 'z, como querfamos demostrar.

13.B. (=) Asumimos que R es simétrica, y demostramos que R = R~!. Que R sea simétrica quiere decir
que xRy implica yRx V¥ x,y € X. Para demostrar que R = R~! tenemos que demostrar que R C R~ y que
R~! C R, es decir, tenemos que demostrar que cualquier elemento que esta en uno también esta en el otro.

Demostraremos primero que R C R~'. Asumamos que xRy queremos demostrar que R~ 'y. Como R
es simétrica = xRy implica yRx = por definicién de R~! tenemos que zR~'y = R C R~

Demostraremos ahora que R~! C R. Asumamos que 2R~ 'y. Por definicién de R~! tenemos que yRz y
como R es simétrica tenemos que xRy => R~' C R. Hemos demostrado entonces que si R es simétrica,
R=R"'.

(<=) Ahora demostraremos que si R = R~! = R es simétrica. Si R = R™! = V x,y € X tal que
xRy tenemos que tener que xR™'y = si xR~y por definicién de R~! tenemos que tener que yRx y esto
confirma que R es simétrica. Por lo tanto, si R = R~', R es simétrica.

Ejercicio 14.(=) Hay que demostrar que si R es transitiva entonces R o R C R. Asumamos que R es
transitiva y tomemos (x,y) € R o R para demostrar que (z,y) € R. Si (z,y) € R o R quiere decir que existe
z € X tal que xRz y zRy. Como R es transitiva, obtenemos (z,y) € R, como querfamos demostrar.

(«<=) Hay que demostrar que si Ro R C R = R es transitiva. Tomemos z,y, z tales que Ry & yRz.
Por definicién de Ro R, tenemos que zRo Rz, y como Ro R C R, obtenemos (z,2) € R, o lo que es lo mismo,
xRz, como querfamos demostrar.

Ejercicio 15. Asumimos que = son Aditivas y Divisibles. Debemos demostrar que para todo z, el conjunto
U, = {y:y = x} es convexo; es decir debemos demostrar que si y&z pertenecen a U, entonces cualquier
combinacion lineal también estd en U,. Es decir, debemos demostrar que para todo z,y,zy a € [0,1],y Z «

& z 7« implican que ay + (1 — )z 7 x. Asumimos que y = = & z > x; como = es divisible debemos tener
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que para todo « € [0,1] se cumple que ay = ax y (1 — )z 2 (1 — @)z. Como = es aditiva, tenemos que
ay+ (1 —a)z = ar+ (1 — a)r = x, como queriamos demostrar.

Ejercicio 16.A. Para demostrar que D es reflexiva, tomamos un z € X y debemos demostrar que (z,z) € D,
que sabemos que se cumple por la definicién de D.

Para demostrar que D es transitiva, tomamos z, ¥y, z € X tales que xDy & yDz, y tenemos que demostrar
que xDz. Por la definicién de D, si xDy es porque © =y, y si yDz, es porque y = z. Por lo tanto, x = z,
que implica zDz, como queriamos demostrar.

Para demostrar que D es antisimétrica mostramos que si zDz y zDx, entonces z = z. Como x Dz implica
r = z, obtenemos inmediatamente la conclusién.

Las propiedades anteriores muestran que D es un érden parcial. Mostramos ahora que también es una
relacién de equivalencia, porque es simétrica: supongo que (x,y) € D, que sucede si y sélo si z = y, que

implica yDx, como queriamos demostrar.

16.B. Tenemos que demostrar que si A es un érden parcial y una relaciéon de equivalencia = A = D, es
decir, tenemos que probar que A C Dy D C A. Para demostrar que D C A sabemos que si A es un 6rden
parcial debe ser reflexiva = (z,z) € A= D C A.

Para demostrar que A C D tenemos que demostrar que (x,y) € A implica (z,y) € D. Supongamos,
(z,y) € A; como A es simétrica, (y,x) € A; como es antisimétrica x = y; es decir, si (z,y) € A, x =y y por
tanto (x,y) € D.

16.C. Sea x € X el tinico elemento de X y sea X x X = 7= = {(z,2)}. Siz = y, (v también y > z, que es
la otra parte de la hipétesis de antisimetria), entonces y = z (porque X x X = =, = {(z,2)}) como requiere
antisimetria.

Sean z,y € X tales que x # y. Como (z,y) v (y,z) € X x X, la relaciéon X x X no puede ser antisimétrica

pues implicaria = = y.

Ejercicio 17.A. Contraejemplo: Sea = = (0,3), y = (3,0) y z = (2,2), tenemos que = »= z, y = z sin
embargo con a = 0,5 tenemos que ax + (1 — a)y = (1,5;1,5) por lo que tenemos que z = az + (1 — a)y

porque 2 > 1,5 = = no es convexa.

17.B. En este ejercicio hay una pequena sutileza, que es que min {a,b} + min{c,d} < min{a+¢,b+d} y
también min {a,b} + min {c¢,d} < min{a + d,b+ c}. La idea es que en el lado izquierdo podemos elegir los
minimos por separado (tenemos m4ds libertad para minimizar), mientras que en el derecho tenemos que elegir
un solo minimo para la suma entera. Para ver que esas desigualdades no son siempre con igualdad, notamos
que

2=min{1,3} +min{3,1} <min{l +3,3+ 1} =4.

Sean x,y & z tales que z » z & y > z. Tenemos que demostrar que ax + (1 — a)y = z, es decir
min {az; + (1 — @)y1, aza + (1 — @)y2} > min{zy, 20} . (4)
Usando z = z <= min{z1,z2} > min{z1,22} & y = z <= min {y1,y2} > min {z1, 22}, obtenemos
amin{z1, ze}+(1—a) min {y1,y2} > min {21, 22} = min {@z1, azs}+min {(1 — @)y1, (1 — @)y2} > min{z1, 22} .

Si aplicamos la idea del inicio de esta parte, obtenemos la ecuacién (4), como queriamos demostrar.
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17.C. Contraejemplo: Sean z = (7,0),
o = 1 tenemos que az + (1 — )y = (5;

y=1(0,7)y z = (4,4), tenemos que x > z, y = z sin embargo con
%) por lo que tenemos que z = ax + (1 — a)y; concluimos que > no
es convexa
17.D. Queremos demostrar que si min {azy + bxa, cxy + dra} > min {az1 + bza, cz1 + dz2} y min {ayy + bya, cy1 + dya2} >
min {az; + bze, cz1 + dza} =
min {a(az1 + (1 — @)y1) + b(azs + (1 — a)y2), c(azr + (1 — @)y1) + d(azs + (1 — a)y2)} > min {az; + bzo, cz1 + dza}.
Sabemos que amin {ax; + bra, cx1 + dzo}+(1—a) min {ay; + by2, cy1 + dy2} > min {az; + bza, cz1 + dza} <
min {a(ax1 + bxa), a(cry + dzo) }+min {(1 — &) (ay1 + bya), (1 — @)(cy1 + dy2)} > min{az1 + bza, c21 + dzo} <
min {a(az1 + bxa) + (1 — a)(ayr + byz), acxr + dx2) + (1 — a)(cy1 + dy2)} > min{az + bza,cz1 + dze} <
min {a(az; + (1 — @)y1) + b(azs + (1 — @)ya), c(azy + (1 — @)y1) + d(azs + (1 — @)ya2)} > min {az; + bze, cz1 + dza}
=7 convexa
17.E. Contraejemplo: Sean z = (6,0), y = (0,6), z = (3,5;3,5),a=d=2yc=b=1.
max {221 + 2,21 + 202} = max{2y; + y2,y1 + 2y2} = 12, mientras que max {2z + 22,21 + 222} =
10,5 por lo que z = z y y > z sin embargo con a = % tenemos que azx + (1 — a)y = (3,3) donde
max{2x3+3,3+2x3}=9< % Entonces z = ax + (1 — a)y, por lo que > no es convexa.

Ejercicio 18.A. Como I =, C, [ =5 Cy C = I el grupo elige I antes que C. Como [ = D, D =g Iy
D = I, el grupo elige D antes que I, y como C =, D, D =5 C'y C =) D, sucede que el grupo elige C'y
no D. Por lo tanto, las preferencias del grupo no son transitivas (ya que si elige D antes que I, y a I antes
que a C, deberfa elegir D y no C).

18.B. Tomamos cualquier x > z; , |, y mostramos que z;, , ; le gana en la votacién a z, pues todos lo 7 < n+1
votan a x,,; y no a x : para todo ¢ < n+1, como x} <z, <z, obtenemos x| > x. Eso muestra que en
x;, 1 obtiene al menos n+1 votos, y le gana a z. La demostracién para la votacién de zj, | contra y < xj
es andloga y se omite.

Ejercicio 19.A. Como 7~ completas, transitivas, monétonas y continuas—> por Teorema de Wold 3 u :
X — R continua tal que z 77 y <= u(z) > u(y).

Como u(-) es continua & Y es compacto, por el Teorema de Weierstrass 3 «* /u(z*) > u(y) Vy € Y <
rrmyvVyey.

19.B. Habiamos asumido que > es mondtona: y > x = y > x. si restringimos 77 a Y y suponiendo que
x,y €Y = y>x = y = x. Pero entonces, por definicién de >y obtenemos también y -y .

Lo curioso es que aunque =y es monétona, no es localmente no saciable, ya que el 2* de la parte anterior
es lo mejor a lo que puede aspirar la persona. Es decir, no 3 € tal que para ese ¢ existe y tal que ||y — z*|| < ¢
Yy =y =¥ porque z* ZyVyeY.

19.C. B es abierto para todo x € B existe r > 0 tal que B(x,7) C B. Para demostrar que =g es localmente
no saciable, tomamos un ¢ cualquiera, y debemos mostrar que existe y > z tal que ||z — y|| < e. Definimos
t = min{r,e} y tomamos y definido por y; = =; + \/% y vemos que ||z —yl| = § <t < ¢, y como ademds
Yy > x, obtenemos y > x y por tanto y >|B T.

19.D. Lo extraino de este ejercicio es que =|yno es localmente no saciable, mientras que =g sf lo es. Lo que
pasa es que cuando nos restringimos a un conjunto compacto va a existir un x que pertenezca a ese conjunto

que maximice la utilidad pero si es abierto no serd asi.

Ejercicio 20.A. Hay que demostrar que (z,y) ¢ =y (y,2) ¢ = implican que (z, z) ¢ 7. Asumamos por

absurdo que 7~ no es negativamente transitiva, es decir que (z,y) ¢ = v (y,z) ¢ 7 pero que (x,z) € 7.
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Por completitud sabemos que si (z,y) ¢ 7~ entonces (y,x) € 7, y por transitividad de 7Z tenemos que
si (y,z) € = & (z,2) € ZZ entonces (y, z) € 77, . Eso contradice (y, z) ¢ 7, y por tanto demuestra que =~ es
negativamente transitiva.

20.B. Asumimos x > y & y = z. Sabemos por el Ejercicio 8, y porque > es negativamente transitiva, que
x > y implica que se dan = > z 0 z > y. Pero z > y no puede ser, pues asumimos y > z que lo contradice;

concluimos que x > z, como querfamos demostrar.

Ejercicio 21.A. R no es completa pues (1,1) ¢ R. Otros mds obvios: ningun elemento de X se puede
comparar con 3. Tampoco es transitiva: 1 > 2 > 1 pero no es cierto que 1 > 1.
21.B. Es Rr = = =1{(1,1),(2,2),(1,2),(2,1),(4,4),(5,5),(4,5),(5,4)} . Es asf porque como 1R2R1,
debemos tener (1,1). Lo mismo con (2,2),(4,4) y (5,5). Eso es por la caracterizacién de Ry en la Parte
E del Ejercicio 10. Por otro lado, si S es una extensién transitiva de R, como 1R2 y 2R1, debemos tener
152 y 251; como S es transitiva, 151. Por lo tanto (1, 1) estd en cualquier extensién transitiva de R, y eso
implica que estard en la interseccién de todas las extensiones transitivas de R (eso es usando la definicién de
extension transitiva mds chica, en la ecuacién 2).

Por otro lado, sabemos que no puede haber ningin par que contenga a 3, como podria ser (1,3), pues
(1,3) ¢ =,y = es una extension transitiva de R; entonces (1,3) no puede pertenecer a la interseccién de

todas las extensiones transitivas de R.
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Eleccién.

El enfoque adoptado en el primer capitulo, sobre Preferencias, era que las elecciones de la gente eran
dictadas por sus preferencias. Un enfoque distinto, que es el que analizaremos en este capitulo es que
las elecciones de la gente se derivan de una “estructura de eleccién”. Segun este enfoque, las elecciones
adoptadas por la gente son lo mds “primitivo” (no hay nada, en particular, no hay preferencias, que dicten
las elecciones).

Una estructura de eleccién en un conjunto X es un par (B,C (-)) en el cual:

1. B es un conjunto de subconjuntos de X : cada B € B es un subconjunto de X, B C X. A cada
B lo llamaremos un conjunto presupuestal (no tiene porqué tener la estructura de una restriccién
presupuestal, el nombre es sélo para fijar ideas). El conjunto B debe ser pensado como la lista de
todos los conjuntos posibles que el consumidor podria llegar a enfrentar en sus problemas de eleccién.
En general, serdn restricciones presupuestales, pero B podria incluir conjuntos més “raros”, como por
ejemplo el que enfrenta un consumidor al que subsidian con 30 flautas por mes (en un gréfico con
flautas y “otros bienes” en los ejes, esto da una restriccién presupuestal quebrada).

2. C(-) es una regla de eleccion: es una funcién que le asigna a cada B en B un subconjunto no vacio
de B. Es decir, C'(B) C B para todo B € B. En principio, C (B) puede tener mas de un elemento
(piensen por ejemplo en alguien que tiene una funcién de utilidad 7 + x5 y los precios de ambos bienes
son iguales: le da lo mismo cualquier canasta que gaste todo el ingreso). C (B) son todas las canastas
que el consumidor “podria” elegir.

Ejemplo 24 Sea X = {z,y,z} v B = {{z,y},{x,y,2}}. Una estructura de eleccién posible es E; =
(B,C1 (+)) donde Cy ({z,y}) = {z} vy C1({z,y,2}) = {z}. Otras dos estructuras de eleccién posible son
Ey = (B,C () donde Cs ({z,y}) = {z} y Ca ({z,y, 2}) = {z,y} y Es = (B,C5 () donde Cs ({z,y}) = {x}
y Cs({z,y,2}) = {2}

Asi como dijimos que completitud y transitividad eran propiedades razonables de las preferencias, cuando
se trabaja con estructuras de eleccién, podemos pensar en qué tipo de propiedades son razonables. Una
propiedad muy utilizada para estructuras de eleccién es el Axioma Débil de la Preferencia Revelada.

La estructura de eleccién (B, C () satisface el Axioma Débil de la Preferencia Revelada (ADPR)

si se cumple que:
z,y €B N
z € C(B)

En palabras, el axioma nos dice que si alguna vez observamos que cuando x e y estaban disponibles, la

z,y € B’
yeC(B)

éxEC(B')}

persona eligié x, deberiamos esperar que en otros problemas, si estdan x e y disponibles, y se eligié y, también
x deberfa ser elegido (o aceptable). En particular, imaginemos que C ({z,y}) = {2}, entonces no podemos

tener C' ({z,y,2}) = {y}.

Ejercicio 25 Suponga que C ({x,y}) = {z}. Si C cumple el ADPR para algtn B tal que {z,y},{z,y,2} € B
jcudl de las siguientes es posible? Si alguna es imposible, demostrar: C ({z,y,2}) =: A) {y}; B) {z,y};

C) {z}; D) {z,2}:E) {«}.
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Otra forma de plantear el ADPR es definiendo a partir de la estructura de eleccién una relacién de pref-
erencias que llmaremos la relacién de preferencia revelada. Dada una estructura de eleccién E = (B, C (+)),
la relacién de preferencia revelada =% ge define mediante

z>Pye existe Be Btalque z,y € By z € C(B).

En palabras, x se reveld al menos tan bueno como y de acuerdo a E' = (B,C (+)) si alguna vez estaban ambos
disponibles, y el individuo eligié . A veces también diremos que x se reveld preferido y si para algin B,
x € C(B), pero y ¢ C (B) (vendria a ser como la preferencia estricta). La relacién de preferencia revelada
> no tiene porqué ser ni completa ni transitiva. En particular, para que sea completa se necesita que exista
algiin B tal que z,y e Byxz € C(B) 6y e C(B).

Ejemplo 3. Este ejemplo presenta, para X = {z,y, 2z}, dos estructuras de eleccién que generan relaciones
de preferencia revelada que no son completas.

Ejemplo 3.A. Para By = {{z,2},{z,y,2}} y C1 {z,2}) = C1 ({z,y,2}) = {2z} y E1 = (B1,C1 (+)) , tenemos
que la persona nunca eligié z o y, y por lo tanto, no se cumple ni =1 y ni y =1 2.

Ejemplo 3.B. Para By = {{z},{z, z}}, sea cual sea Cy, la relacién de preferencia revelada nunca podra

ranquear a T € y.

Ahora si, otra forma de plantear el ADPR es: La estructura E = (B, C (+)) satisface el ADPR si siempre
que x se revela al menos tan bueno como y, y no se revela preferido a x.

Ejemplo 4. En este ejemplo analizamos las estructuras de eleccién presentadas en el Ejemplo 1, y verificamos
si satisfacen el axioma débil. Para E;, tenemos que z =1 2z y que x =¥ 3. Para violar el ADPR, tendrfamos
que tener que z o y se revelen preferidos a x, y eso no se da nunca. En otras palabras, tendriamos que observar
que alguna vez se eligi6 z y no z (o y, y no x), pero eso no sucede. Por lo tanto, E; satisface el ADPR.

La estructura Fs viola el axioma débil. Para ver porqué notamos que como Co ({z,y,z2}) = {z,y},

tenemos y =% z. Pero como Cs ({z,y}) = {z}, = se revel6 preferido a y, lo que contradice el ADPR.

La interpretaciéon de B como las restricciones presupuestales a las que se enfrenta en individuo en una serie
de problemas de eleccién, y de C (B) como el conjunto (observable) de las canastas elegidas tiene problemas.
Fl principal, es que en los problemas de eleccién, el individuo no dice “soy indiferente entre tales y cuales
canastas, pero elijo esta porque si”. Sencillamente observamos su eleccién. Asi, podria pasar que el conjunto
de alternativas es un cierto X = {w,x,y,z} y B = {{z,y},{w, 2}}. Suponga que cuando el individuo es
indiferente entre dos alternativas, elige de acuerdo a la tirada de una moneda e imaginemos que en los dias
pares debe elegir en {z,y} y en los impares en {w, z}. En este caso podria suceder que si el individuo es
indiferente entre x e y, observemos que en el dia 2, elija x, lo que nos llevarfa a concluir C (z,y) = z, pero en
el dia 4 elija y, lo que nos llevaria a concluir que C (z,y) = y. Esto, por supuesto, es imposible, y va contra
la nocién de una funcién C bien definida. En la préctica estos problemas se resuelven de diversas formas.
Una de ellas es decir que C (z,y) = {z,y}.

Ejercicio 5. El inconformista. Como siempre, sea X = {x,y, z} un conjunto de canastas o alternativas,
y sea (B,C (+)) una estructura de elecciéon. En cada uno de tres dias consecutivos, vemos al tomador de
decisiones elegir una sola canasta de By = {z,y}, B2 = {y,2} y Bs = {z,y,2z}. Como esta persona es una
inconformista, sabemos que si un dia elige una canasta, no la elegird en ningin dia futuro.

Parte A. Demuestre que para cualquiera de los tres posibles tripletes de elecciones que haya hecho el
individuo, se viola el Axioma Débil de la Preferencia Revelada.

21



Parte B. Encuentre tres “restricciones presupuestales” B; distintas a las de la letra, y una funcién C, con

las cuales un inconformista igual cumplirfa con el Axioma Débil.
Parte C. Demuestre su respuesta de la Parte B.
Ejercicio 6. Deberes. Sea X = R,.

Parte A. Para B = {[a,b] : a,b € Ry,a < b} y C definida mediante

Clab] = [“T”’b}

determine si la estructura de eleccién (B, C (+)) satisface el Axioma Débil de la Preferencia Revelada.

Parte B. Para B = {[a,b] : a,b € R4, a < b} y C definida mediante C [a,b] = {b} , determine si la estructura

de eleccion (B, C (+)) satisface el Axioma Débil de la Preferencia Revelada.

Parte C. Para B = {[a,b] : a,b € Ry,a < b} y C definida mediante C [a,b] = {a,b} , determine si la estruc-
tura de eleccién (B, C (-)) satisface el Axioma Débil de la Preferencia Revelada.

Ejercicio 7. Deberes. Sean X = Ry, B= {[a,b] : a,b € Ri,a < b} y C definida mediante C [a,b] = {b} .

Parte A. Demuestre que para la estructura de eleccion E = (B, C (-)) la relacién de prefrencia revelada =%
es completa y transitiva.

Parte B. Demuestre que ==> . Una pista (para este ejercicio, y en general): para demostrar que dos
conjuntos son iguales, hay que demostrar que estdn contenidos entre si: =FC >y que > C =F.

Ejercicio 8. Considere la estructura de eleccién (B,C(-)) donde B = ({z,y},{z,y,2}) y C({z,y}) = {z}.
Demuestre que si (B, C(-)) satisface el ADPR, entonces debemos tener que C'({z,y,2}) = {z},= {2}, o

= {x,z}.

Ejercicio 9. Demuestre que el ADPR es equivalente a la siguiente propiedad: Suponga que B, B’ € B,
que z,y € B, y que x,y € B’. Entonces si x € C(B) y y € C(B’), debemos tener que {z,y} C C(B) y
{z,y} c C(B).

Ejercicio 26 Suponga que hay dos bienes, y un individuo enfrenta los precios p* e ingresos I*, y elige las
canastas z¥, en los dias k =1,2,3 y 4 :

k Ik k

p T
1 (1,2) 5 (3,1)
2 (2,1) 5 (1,3)
3 (1,3) 6 (1, %)
4 (1, 1) 4 (131,132)

Parte A. jEn cudles de los pares de dias (1,2), (1,3) y (2, 3) las elecciones son consistentes con la racionalidad
del individuo?
Parte B. Dibuje en un gréfico la regién donde podrian estar (x1,x2) para que las elecciones 1, 2 y 4 sean

consistentes con la racionalidad del individuo.
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Relacién entre Preferencias y Eleccion

En el Capitulo 1 el enfoque era que las elecciones de la gente eran dictadas por sus preferencias. FEn el
Capitulo 2, el se adopté el enforque que las elecciones de la gente se derivan de una “estructura de eleccién”.
En este capitulo veremos cuél es la relacién entre ambos enfoques. En particular, contestaremos las siguientes

dos preguntas

1. Si un tomador de decisiones tiene una relacién de preferencias completa y transitiva >, la regla de
eleccién “C” que genera cuando se enfrenta a restricciones presupuestales en B, jsatisfacen el axioma
débil?

2. Si las elecciones de un individuo en el conjunto de restricciones presupuestales B se puede capturar
por una estructura de eleccion E (B,C (+)) que satisface el axioma débil, jexiste necesariamente una

relacién de preferencias (completa y transitiva) que sea consistente con esas elecciones?

Primera Pregunta

La respuesta a la primera pregunta es corta y sencilla: si. Supongamos que un tomador de decisiones
tiene una relacién de preferencias completa y transitiva »= en X. Si esta persona enfrenta un conjunto de

alternativas no vacio B C X, su comportamiento éptimo consiste en elegir cualquier elemento en
C(B,>)={z € B: x>y paratodo y € B}. (5)

Los elementos de C (B, ) son las mejores alternativas.en B. En principio, C (B, *) podria ser el conjunto
vacio para algin B, o para alguna relacién de preferencias mal comportada. Si B es finito, esto nunca
puede pasar. De todas maneras, asumiremos en lo que resta del capitulo que las preferencias y BB son tales
que C (B, ) siempre es no vacfo. Para cualquier B, diremos que la relacién de preferencias > genera la
estructura de elecciéon E = (B,C (+,)).

Antes de responder a la primera pregunta, debemos investigar bajo qué condiciones C (B, =) estd bien
definido, o lo que es lo mismo, bajo qué condiciones es una regla de eleccién. El siguiente Ejercicio nos da
un caso particular para el caso en que X es finito.

Ejercicio 0. Sea X un conjunto finito. Decimos que una relacién binaria »= en X es aciclica si x,, >
T—1 > ... = To > 21 implica x,, # x1.

Parte A. Para una relacién binaria > muestre que
D (B,>) ={z € B:no existe y tal que y > x} (6)
es no vacio para todo B si y sélo si > es aciclica.

Parte B. Encuentre un ejemplo en el cual X no sea finito, > sea aciclica, y D (B, =) sea vacio para algin
B.

Parte C. Muestre que si > es transitiva, entonces es aciclica. Verifique que en X = {1, 2} la relacién
= {(17 2) ) (27 1)}
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es aciclica pero no transitiva.

Parte D. Muestre que si > es completa, entonces D (B, =) = C (B, ») para todo B. Note que las Partes A
)e

y C muestran que si > es completa y transitiva, entonces C (B, =) es no vacio.

Parte E. Encuentre una relacién binaria > tal que D (B, =) # C (B, ») para algin B.

Parte F. Demuestre por induccién en el tamafio de X que si = es completa y transitiva, entonces C (B, )

es no vacio para todo B.

Ejercicio 27 Sea X un conjunto cualquiera y > definido en X. Demuestre que la relacién binaria = es com-
pleta y aciclica siy s6losi C- (A) # 0 para todo A finito. Recuerde que Cy- (A) = {z € A: z = y para todo y € A}.

Ejercicio 28 Asuma que > es completa y transitiva. Para D (B, *) = {z € B : no existe y tal que y > z}
muestre que si w,z € ANB, w € D(A,>) y ademds z € D (B,>), entonces z € D(A,>) y ademds
weD(B,x).

Ahora la respuesta a la pregunta (1).

Teorema 1: Si = es una relaciéon de preferencias completa y transitiva en X, entonces la estructura de
eleccion E = (B, C (-, >)) generada por = satisface el Axioma Débil.

Prueba: Debemos demostrar que siempre que x se revele al menos tan bueno como y, usando F =
(B,C(-,~)), tendremos que siy € C (B',>) y € B’, se cumplird que x € C (B’, =) . Recalcando, debemos

mostrar que
x,y € B N
xeC(B,x)

Supongamos entonces que z,y € By que x € C (B, >). Por definicién de C (B, *) eso quiere decir que

z,y€ B’
yeC(B,x)

:\xEC(B’,t)}

x = y. Supongamos ahora que z,y € B’ y que y € C (B’, =) . Por definicién de C (B’, =) eso quiere decir que
y = z para todo z € B’. Tenemos entonces que x > y > z para todo z € B’. Como > es transitiva, tenemos

x = z para todo z € B’, y por tanto x € C (B’, =), como queriamos demostrar. ll

Segunda Pregunta

La respuesta a la segunda pregunta es mas sutil. Comenzaremos con una definicién. Dada una estructura
de eleccién E = (B,C (+)), diremos que la relacién de preferencias (completa y transitiva) > racionaliza a

C () relativo a B (o racionaliza a E) si
C(B)=C(B,*>) paratodo B € B.

En palabras, > racionaliza a C si las elecciones 6ptimas generadas por =, y capturadas por C (-, =), son
las mismas que C. Si > racionaliza a C, podemos pensar que el comportamiento de un agente que elige de
acuerdo a C' es como si estuviera dictado por la relacién de preferencias > .

En la definicién de racionalizacién estd la frase “relativo a B” porque en la definicién de C aparece el B

para el cual estd definido.
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Ejercicio 2. Sea X = {x,vy, 2z} y suponga que = = {(z,y), (v, 2), (x, 2), (z,2), (y,¥) , (z,2)} . De un ejemplo
de una funcién C'y dos conjuntos de restricciones B; y By con By C Bs tales que > racionaliza a C' relativo

a By pero no a Bs.
También, puede suceder que haya mas de una relacién de preferencias que racionalice a una C' dada.

Ejercicio 3. Deberes. Encuentre un ejemplo de una estructura de eleccién E que pueda ser racionalizada
por més de una relacién de preferencias, y diga cudles son las preferencias que la racionalizan. (Pista: si B
incluye como restricciones presupuestales a todos los pares de X, entonces existe a lo sumo una relacién de
preferencias que racionaliza a E).

El préximo ejemplo demuestra que la respuesta a la segunda pregunta (si una estructura E satisface el

ADPR, ;siempre puede ser racionalizada por una relacién de preferencias =7) es no.

Ejemplo 4. Sean X = {x,y,z} yB = {{x7y}v{y7z}7{x7z}}7 C({x,y}) = {1’}, C({yvz}) = {y} y
C ({z,z}) = {z}. La estructura de eleccion E = (B,C(-)) satisface el axioma débil pues no hay en B
conjuntos distintos B y B’ tales que ambos contengan a dos elementos v y w, y eso es una condicién
necesaria para violar el ADPR. A pesar de eso, no existe una relacién de preferencias que racionalice a E.
Supongamos que hubiera una > que racionalizara a C. Si asi fuera, tendriamos

C({xzy}) = {z}=a>y
CHy.2) = {yt=y»=
C{z,z}) = {z}=>z>2z

lo que es imposible para una relacién > transitiva.

Notamos que cuantas mds restricciones presupuestales hay en B, mas restringe el axioma débil la forma
que puede tomar C, pues con mds restricciones, hay més posibilidades para que el comportamiento de C sea
contradictorio. En el ejemplo anterior, {z,y, z} no es un elemento de B, y resulta que eso es muy importante.
Ya lo veremos mads adelante en estas mismas notas. Por ahora basta el adelanto que si B tiene suficientes
subconjuntos de X, y la estructura E = (B, C (+)) satisface el axioma débil, entonces existe una relacién de
preferencias > que racionaliza a F.

Ahora estamos prontos para establecer las condiciones bajo las cuales la respuesta a la segunda pregunta

es afirmativa.

Teorema 5: Si E = (B,C (-)) es una estructura de eleccién tal que

(7) Se satisface el axioma débil

(#4) B incluye todos los suconjuntos de X de hasta tres elementos

entonces existe una unica relaciéon de preferencias (completa y transitiva) = que reacionaliza C (-) relativo a
B. Es decir, C (B) = C' (B, ) para todo B € B.

Prueba: La relaciéon de preferencias que pide a gritos ser la candidata a racionalizar E es la relacién

de preferencia revelada =¥ . De hecho, demostraremos que =¥ es completa y transitiva, y que ademds
racionaliza a E. Finalmente, demostraremos unicidad.
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(a) =¥ es completa: para todo z,y € X, 2 =¥ y 6 y =¥ z. Por (ii), para cualquier e y tenemos que
{z,y} € B, por lo que se debe cumplir que: o z € C ({z,y}), en cuyo caso z =¥ y, o y € C ({x,y}), en cuyo
caso Yy iE .

(b) =¥ es transitiva: para todo z,y,2z € X, x =¥ y e y =F 2 implican = =¥ 2. Asumamos z =¥ y e y =¥ 2,
y analicemos qué sucede con el conjunto {z,y,z} € B. Alcanzard con probar que z € C ({z,y,z}), ya que
eso implica x =¥ z. Como C ({z,y, z}) es no vacio, debemos tener que o x o y o z pertenecen a C ({z,y,2}) .
Si x pertenece, no hay nada que probar. Supongamos entonces que y € C ({z,y,2}). En ese caso, como
xz =y, y E satisface el ADPR, debemos tener z € C ({x,y,2}). Si z € C ({z,y,2}), y =¥ 2 y el axioma
débil implican que y € C ({x,y, z}) , usando otra vez x =¥ y y el axioma débil obtenemos z € C ({x,y, z}),

como queriamos demostrar.

(¢) =¥ racionaliza a E : para todo B € B, C(B) = C (B, =¥) (la relacién de preferencia revelada generada
por C racionaliza a C). Para demostrar C'(B) = C (B, =) debemos establecer que: (1) C (B) C C (B, =¥)
y que (2) C (B, =F) C C(B).

(1) Para cualquier z € C (B), tenemos que = =% y para todo y € B (por definicién de =¥). Por lo tanto,
rzeC (B ,-F ) .

(2) Para cualquier z € C (B, EE) , tenemos que = =¥ y para todo y € B. Eso quiere decir que para cada y
existe un By, € B, tal que z,y € By y « € C(B,). Por el axioma débil, para cualquier y € C'(B), como z se
revel6 al menos tan bueno como y, debemos tener z € C' (B), como querfamos demostrar.

(d) si = y R racionalizan a E, entonces = = R. Otra vez, demostraremos (1) = C Ry (2) R C .

(1) Supongamos que (z,y) € = . Como - racionaliza a E, quiere decir que z € C ({z,y},>) = C ({z,y}),
y como R también racionaliza a F, x € C ({z,y}) = C ({z,y}, R) por lo que debemos tener zRy.

(2) es igual a (1) y se omite. H

El préximo ejercicio investiga las consecuencias del Axioma Débil, cuando los B en B son restricciones

presupuestales a las que estamos acostumbrados.

Ejercicio 29 Sea X = R% y sean By = {z:(2,2)2 <20}, y B> = {z:(1,3)z <20}. Definimos B =
{By, Bz} .

Parte A. Si C(B;) ={(8,2)} vy C (B2) = {(8,4)}, {Se cumple el Axioma Débil? Tlustre gréficamente las

restricciones presupuestales, y las elecciones.

Parte B. Si C' (B;1) = {(8,2)} y C(B2) = {(2,6)}, ;Se cumple el Axioma Débil? Ilustre gréficamente las

restricciones presupuestales, y las elecciones.

Parte C. Si C(B;) = {(2,8)}, ¢hay algiin C (Bs) para el cual no se cumpla el Axioma Débil? Demuestre
su respuesta.

Ejercicio 30 Suponga que hay L bienes, y que a los precios p € RJLr la persona elige (solo) la canasta
x. Ahora sube el precio del bien 1 a p} y todos los deméds precios se mantienen constantes, y el individuo
incrementa su ingreso de tal manera que le alcanza justo para volver a comprar z : I’ = p’z. Sea z la
(dnica) canasta demandada por el individuo a los precios p’ = (pf, p2, ...,pr) . Muestre que si las elecciones

del individuo satisfacen el ADPR entonces z; < z.
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La definicién y teorema que siguen dan una caracterizacién completa de las estructuras de eleccién que
pueden ser racionalizadas por una relacién de preferencias = . Dada la relacién de preferencia revelada =
asociada a una estructura de eleccién E = (B,C (+)), definimos la relacién =¥ la relacién de preferencia

revelada indirecta, mediante

T iIE y < 31, T, ..., T, tales que x =F 2y =F =P g, =F .

Es decir, decimos que z se revel6 indirectamente al menos tan bueno como y, si = se revelé al menos
tan bueno como z1, z; al menos tan bueno como zo, ..., x, al menos tan bueno como y. Decimos que una
estrucutra de eleccién E = (B,C (+)) satisface el Axioma Fuerte de la Preferencia Revelada (AFPR)
si para todo z,y € X y B € B,
yeC(B)

z=Fy =€ C(B)

zeDB
El axioma fuerte nos dice que si x se revelé indirectamente al menos tan bueno como y, y se elige y en B,

entonces se deberia elegir x también en B.

Ejercicio 6. Demostrar que si una estructura E satisface el axioma fuerte, entonces satisface el axioma
débil.

Ejercicio 7. Demostrar que para cualquier E, =¥ es la mas chica de las relaciones de preferencias transitivas
y que contienen a > . En general, mostrar que para cualquier relacién binaria R C X x X, la relacién R,

definida mediante
xRy < Jxq, o, ..., x, tales que x1 =z, x, =y & x1RzoR...Rx,,.

es la mds chica de las relaciones de preferencias transitivas y que contienen a R. En este ejercicio, y en
general, un conjunto (recordar que las relaciones de preferencias son conjuntos) es el mds chico en una cierta
clase (en este caso, en la clase de preferencias transitivas y que contienen a R) si estd contenido en cualquier
otro conjunto de la clase. Pista: se puede mostrar que hay al menos una relacién transitiva que contiene a

R, y luego verificar que R; es la interseccion de todas las relaciones transitivas que contienen a R.

Teorema 31 (Richter) Una estructura de eleccion E = (B,C (+)) satisface el axioma fuerte si y sdlo si

existe una relacion de preferencias = que la racionaliza.

Ejercicio 32 Sea X = {1,2,3,4,5,6} ysea B={{1,2},{4,5},{5,6},{4,6}},con C(1,2) = {2}, C (4,5) =
{5},C(5,6) = {6} y C'(4,6) = {4}.

Parte A. | F = (B,C (-)) satisface el ADPR?

Parte B. | E = (B,C (+)) satisface el AFPR?

Parte C. ;Si ponemos C (1,2) = {2},C (4,5) = {4,5},C (5,6) = {5,6} y C (4,6) = {4,6}, se cumple el
AFPR?

Parte D. Encuentre una relacién de preferencias completa y transitiva que racionaliza a E = (B,C (+)) de
la Parte C.

Ejercicio 33 Hemos recogido datos sobre las compras de una persona, en tres dias distintos, recogidos en

la siguiente tabla:

Dia 1 P11 = (17273) T = (3727 1)
Dia 2 p27(27173) T2 = (%727%)
Dia 3 p:(,%,l) x3 =(2,3,1)



Parte A. ;Las elecciones son consistentes con el ADPR?
Parte B. jExiste alguna relacién de preferencias que racionaliza a estas elecciones (si sabemos que eligié x;

en el dia 4, y no “eligié también” otro de los z;; es decir, su eleccién fue tinica)?

Algunas veces, el axioma débil de la preferencia revelada se separa en dos partes, siguiendo la presentacién
de Amartya Sen, quien recibié el Premio Nobel de Economia en 1998. Se dice que la regla de eleccién C':

satisface el Axioma « de Sen si x € C (B) siempre que x € BC Ay x € C'(A). En palabras de Sen, si

el club campeén mundial de cricket es paquistani, ese club también es el campeodn de cricket de Pakistédn.

satisface el Axioma (3 de Sen si x € C (B) siempre que A C B,y € C(B) y z,y € C(A). En palabras
de Sen, si el club campeén mundial de cricket es paquistani, entonces todos los campeones paquistanies son

campeones mundiales.

Ejercicio 9. Para cada una de las siguientes afirmaciones, indique si son verdaderas o falsas, demostrando

su afirmacién si es verdadera, o un contraejemplo si es falsa.

Parte A. Para cualquier relacién binaria =, la regla de eleccién D (-, =) definida en (6) satisface el Axioma

« de Sen.

Parte B. Para cualquier relacién binaria >, la regla de elecciéon C (-, =) definida en (5) satisface el Axioma
a de Sen.

Parte C. Para cualquier relacién binaria >, la regla de eleccién D (-, =) definida en (6) satisface el Axioma
B de Sen. En caso que esta afirmacién sea falsa, encuentre una relacién aciclica > tal que D (-, >) viole el
Axioma [ de Sen.

Parte D. Para cualquier relacién binaria =, la regla de eleccién C (-, =) definida en (5) satisface el Axioma

8 de Sen.

Parte E. Para cualquier relacién binaria transitiva >, la regla de elecciéon C (-, ) definida en (5) satisface

el Axioma (5 de Sen.

Ejercicio 10. Deberes. Suponga que F (B,C (-)) es una estructura de eleccién en la cual C es generada
por una relacién de preferencias = que se puede representar por una funcién de utilidad u que mapea el

espacio X (que contiene a todos los B € B) a R. jSe puede asegurar que C' satisface el Axioma Débil?

La demostracién del teorema de Richter no es muy extensa ni dificil, pero requiere algo de trabajo. En
ella se utiliza el Lema de Zorn.

El Lema de Zorn. Dado un conjunto X cualquiera y una relacién binaria R C X x X que es reflexiva,
transitiva y antisimétrica (xRy e y Rz implican z = y), llamamos a R un orden parcial, y decimos que X estd
parcialmente ordentado por R. El ejemplo més obvio de un orden parcial es el > en R?. Una cosa importante
para notar es que un orden parcial R no tiene porqué ser completo. Una cadena C' en X es un subconjunto
C de X tal que para todo z,y € X, tenemos xRy o yRz. Es decir, C' en X es una cadena si R, restringido
a C es completo. Una cota superior para un conjunto C' C X es un « € X tal que xRy para todo y € C.
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Lema 10. Lema de Zorn. Sea R un orden parcial en X. Si toda cadena C' en X tiene una cota superior,
entonces existe un x,, € X tal que x,, Rz para todo x € X. El elemento x,, se llama un elemento maximal.

El Ejemplo 4 mostraba una estructura de elecciéon E que no podia ser racionalizada por ninguna relacién
de preferencias. Dado el Teorema 8, sabemos que E debe violar el axioma fuerte. De hecho, vemos que
como z =¥ y e y =¥ 2, tenemos que z =¥ 2. El axioma fuerte nos dice entonces que como z € C ({z,2}),
deberfamos tener = € C ({x, z}), lo cual no se cumple.

Ejercicio 11. Deberes. Sea X = {1,2,3,4} y sea R = {(1,2),(2,3),(3,4)}. Si = es transitiva y R C >,
liste tres pares (x,y) que no estan en R, que tienen que estar necesariamente en > .

Ejercicio 12. Demuestre que si X es finito, entonces cualquier relacién de preferencias completa y transitiva
= genera un regla de eleccién no vacia; es decir, C(B,>) # @V B C X con B # &.

Ejercicio 34 Demuestre que para una estructura de eleccién (B, C (-)) para la cual existe una relacién de
preferencias que la racionaliza se cumple la siguiente propiedad: V par By, By € B tal que By U By € By
C(B1) UC(B2) € B tenemos que C' (By U By) = C (C (B1) UC (Ba)) es decir, el problema de eleccién puede
ser subdividido sin cambiar el resultado del mismo.

Ejercicio 35 Sea (B,C (:)) una estructura de eleccién en el conjunto X, donde B incluye todos los sub-
conjuntos no vacios de X. Es decir, para cualquier subconjunto B no vacio de X, C (B) estd definido, y

C (B) # . Decimos que la funcién C' es distributiva si para dos sets cualesquiera B y B’ tenemos
CBNCB)Y#+£0=C(B)NnC(B")=C(BnHB).
Demostrar, o dar un contraejemplo para la afirmacién “si C' es distributiva, (B, C (+)) satisface el ADPR”

Cuando el conjunto B de menties (restricciones presupuestales) salen de la existencia de precios e ingresos,
a menudo se utiliza el Axioma Generalizado de la Preferencia Revelada (AGPR) (General Axiom
of Revealed Preference, GARP) que dice que dice que si z, z estaban disponibles en B, y el individuo eligié
x (se revel6 al menos tan bueno como z), no puede suceder que en algiin otro B’ (resultante de precios p'),
tengamos que z se elija atin si p’'z > p'x.
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Soluciones

Ejercicio 25.A. Poniendo B = {z,y} y B’ = {z,y, 2}, vemos que el ADPR implica que = € C (B’), por lo
que C ({z,y,z}) = {y} es imposible.

25.B. Poniendo B = {z,y,z} y B’ = {x,y}, vemos que el ADPR implica que y € C(B’), lo que es
incorrecto.

25.C.D.E. C ({z,y, z}) = {2} 0, C ({=,y,2}) = {z, 2} 0 C ({=,y, 2}) = {x} son posibles.

Ejercicio 26.A. Las elecciones en los dias 1 y 2 cumplen con el axioma débil, pues las canastas elegidas no
podrian haberse comprado en el otro dfa. En los dfas 1 y 3 no se cumple el axioma débil: z'p? =6 < I? y
z3pl = 1—33 < 5. En los dias 2 y 3, el individuo no podria haber comprado 2% con los precios del tercer dia,
p3, por lo que se cumple el axioma débil.

26.B. Debemos graficar las tres restricciones presupuestales, y vemos que el dia 4 estdn disponibles tanto
(1,3) como (3,1). Por eso, el individuo debe consumir algo que no esté dentro de las restricciones pre-
supuestales de los dias 1 y 2 (salvo que sean (1,3) o (3,1)) si lo hiciera, se violaria el axioma débil.

Ejercicio 27. Asumimos ahora que Cy- (A) es vacio para algin A, y mostraremos que en ese caso = no es
aciclica o no es completa. La negacién de “completa y aciclica” no es “no completa y no aciclica”; es “no
completa o no aciclica”. Para ver por qué el “o” pensemos lo siguiente: si alguien dice que un restaurante
es caro y malo, jcudndo es falsa la aseveracién? Cuando no es caro, o no es malo.

Tomamos un elemento cualquiera de A y le llamamos z;. Como z; ¢ Cx (A), existe algin elemento de
A, que llamamos 2 tal que x2 > 1 0 no se cumple x1 = 29 ni xo = x1. Si 21 no es comparable con xs, ya
habremos demostrado el resultado, por lo tanto asumimos que z > x; [una cosa importante aca, es que a&b
implican ¢ es equivalente a “no ¢” implica “no a O no b”]. A su vez, como zs ¢ Cx (A), quiere decir que
existe un x3 tal que x3 = 2 (igual que antes descartamos que no sean comparables). Si x3 = x1, habremos
encontrado un ciclo, por lo que > no es aciclica. Supongamos entonces 3 # x1. Como x5 ¢ C (A), quiere
decir que para algun x4, x4 > 3. Si x4 = T2 0 T4 = x1, habremos encontrado un ciclo, por lo que asumimos
que x4 # x; para i < 4. Continuando de esta manera tantas veces como elementos haya en A, resultard
que para el ltimo elemento de A que nos quede, x,,, tendremos x; > x,, para algin ¢ < m, y por lo tanto
sucederd que T; = Ty, = Tm_1 = ... = Ti, por lo que = no es aciclica.

Si > no es completa, existen z1 y 2 que no son comparables, por lo que Ci ({x1,22}) = (. Asumimos
por lo tanto que > es completa, pero no es aciclica y mostraremos que entonces existe un A para el que
C- (A) = 0 es vacio. Habremos establecido entonces que con = completa, si Ci- (A) es no vacio para todo A
entonces = es aciclica. Si > no es aciclica eso implica que existe un ciclo x1 = Z;,_1 = ... = 2 = x1. Para
A={z1,29,...;xm1}, z; ¢ Cx (A) pues zip1 > x; parai = 1,..,m—2,y Tp_1 ¢ Cx (A) pues x1 > Tpy_1.

Por lo tanto, C'- (A) es vacio.

Ejercicio 28. Supongamos que z ¢ D (A, =). Eso quiere decir que existe y € A tal que y > z (no se elige
z, porque hay un y mejor). Pero como z € D (B, =),y w € B, sabemos que no es cierto que w > z; como
> es completa, debemos tener z > w. Tenemos entonces que existe y € A tal que y > z = w, que implica
y > w. Eso contradice que w € D (A, »); debemos tener entonces z € D (A, ).

La demostracién de w € D (B, =) es igual, y se omite.
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Otra forma de hacerlo, es usando el Teorema 1. Primero, notamos que cuando > es completa y transitiva,
C(A;=)=D(A4; =) ya que

reC(Ax)er-yWeAasPcAly-zoreD(Ax)

(notamos que en el < del medio, Jy € A |y = x = = > y,Vy € A porque > es completa; si = no fuera
completa, podria suceder que todos los y fueran incomparables con z, y C serfa vacio). Por lo tanto, D (- ;=)
satisface el ADPR, por lo que

w,z € B N w,z € A
w € D (B;¥) z€D(A;»)

y en forma similar z € D (B;>).

éweD(A;F)}

Ejercicio 5.A. Si elige y primero, debe elegir z después, por lo que el iltimo dia debe elegir x, que viola el
axioma débil, pues elige = estando y el ultimo dia, e y estando z el primero. Similarmente, si elige = y luego
y, deberd elegir z el dltimo dia, que ird contra su eleccién de y el segundo. Si elige x y luego z, deberd elegir
y el dltimo dfa, contradiciendo su eleccién de z el segundo.

5.B. Bl = {1‘} ,BQ = {y} ,B3 = {Z} .
5.C. Las hipdtesis del Axioma Débil no se cumplen, por lo que se cumple trivialmente.

Ejercicio 6.A. La correspondencia de eleccién C no satisface el ADPR. Para By = [0,2] y By = [1,3],
tenemos que 1,2 € By y 1 € C(By) = [1,2], y sin embargo, 1,2 € By y 2 € C(Bz) = [2,3] pero no se
cumple que 1 € C'(Bsg). La idea es sencilla: nos “gusta” 1 al menos tanto como 2 cuando estamos en B,

pero cuando estamos en Bs nos gusta estrictamente mas 2.

6.B. La correspondencia C' si satisface el ADPR. Siz,y € By ademéds « € C'(B), debemos tener que x > y.
Si ademéds z,y € B’ y ademéds y € C'(B’) debemos tener y > x. Por lo tanto, 2 = y. Deducimos entonces
quez € C(B).

6.C. No satisface el ADPR. Tomamos B = [0,2], B’=[0,3],z =2y y = 0. Vemos que z,y € By x € C(B).
También, z,y € B’y y € C(B’). Sin embargo, = ¢ C (B’).

Ejercicio 7.A. Para demostrar que =% es completa, tomamos z e y cualesquiera. Suponemos, sin pérdida
de generalidad, que z > y. Para B = [0, x] € B tenemos que z € C'(B), y por lo tanto z =% y. Eso demuestra
que =¥ es completa. Lo de “sin pérdida de generalidad” es porque hubiera dado lo mismo hacerlo con y > x.

7.B. Supongamos que z =¥ y =¥ 2. Debemos demostrar que z = z. De 2 =¥ y deducimos que existe un
B tal que z,y € By € C(B). En particular, eso quiere decir que x > y. Similamente, tenemos que y > z
y por lo tanto, z > z. Tomemos ahora el conjunto B’= [0, z]. Tendremos entonces z,z € B’y z € C'(B’),
por lo que = =¥ z, como querfamos demostrar.

z,y€ Xy B€B,
yeC(B)
z=Fy =€ C(B)
reB
Sea X ={1,2,3,4,5,6} ysea B = {{1,2},{4,5},{5,6},{4,6}},con C (1,2) = {2}, C (4,5) = {5},C (5,6) =
{6}y C(4,6) = {4}.
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Soluciones de Relacion Preferencias-Eleccion

Ejercicio 0.A. Asumimos primero que = no es aciclica y mostraremos que entonces existe un B para el
que D (B, ) es vacio, estableciendo que si D (B, *) es no vacio para todo B entonces = es aciclica. Si =
no es aciclica eso implica que existe un ciclo 1 > Zy—1 > ... = z2 = x1. Para B = {1,292, ..., Tm-1},
x; ¢ D(B,>) pues x;4q1 > x; parai = 1,..m — 2,y &1 ¢ D(B,>) pues 1 > Z;y_1. Por lo tanto,
D (B, ) es vacio.

Asumimos ahora que D (B, ) es vacio para algun B, y mostraremos que en ese caso = no es aciclica.
Tomamos un elemento cualquiera de B y le llamamos z1. Como z1 ¢ D (B, >), existe algun elemento de
B, que llamamos x5 tal que zo > x1. A su vez, como x5 ¢ D (B, >), quiere decir que existe un z3 tal que
x3 = x9. Si x3 = x1, habremos encontrado un ciclo, por lo que > no es aciclica. Supongamos entonces
x3 # x1. Como z3 ¢ D (B, ), quiere decir que para algin x4, x4 > 3. Si 4 = 23 0 ©4 = x1, habremos
encontrado un ciclo, por lo que asumimos que x4 # z; para i < 4. Continuando de esta manera tantas
veces como elementos haya en B, resultard que para el ultimo elemento de B que nos quede, z.,, tendremos
T; = T, para algin ¢ < m, y por lo tanto sucederd que x; > Ty = Tm—1 = ... = Z;, por lo que > no es

aciclica.
0.B. Ponemos X = R y = =>, que es aciclica (hay que verificarlo). En ese caso, D ((0,1),>) es vacio.

0.C. Asumimos que > no es aciclica, de tal forma que 1 = Z;,—1 > ... = Zo > X1, y mostraremos que en
ese caso ~ no es transitiva. El ciclo 1 > x,,—1 > ... = x2 > x1 implica que &1 > Tp—1 = ... = To y Si =
fuera transitiva tendriamos x1 = x,,—2, que junto con ,,_s = T,,—3 implicaria 1 = x,,_3. Continuando de
esa manera obtendriamos x1 = x2, lo que contradice zo > 1.

La relacién del ejemplo es aciclica porque no hay ningin z; y x; tales que x; = ;, por lo que, como no
se cumple el antecedente de la propiedad aciclica, la misma se cumple automéiticamente. La relacién no es
transitiva pues 1 = 2 = 1 y sin embargo, no se cumple que 1 > 1. Otro ejemplo un poco menos tonto es con
X ={1,23}y

==1{1,1),(2,2),(,3),(1,2),(21),(2,3),(3,2)}.

0.D. Demostramos primero que D (B, =) C C(B,>). Si z € D (B, ), quiere decir que no existe y € B
tal que y > z. Si x ¢ C(B,>), es porque existe algin y para el cual no es cierto que = = y, pero como
> es completa, eso significa que y = x, lo que combinado con que no se cumple que = > y, arroja y = x,
contradiciendo que z € D (B, ).

Demostraremos ahora que C (B, =) C D (B,>). Si € C (B, =) quiere decir que x = y para todo y en
B, por lo que no existe ningtin y tal que y > x, asegurando que © € D (B, ).

0.E. Sea X = {1,2,3} y sea == {(1,1),(2,2),(3,3)}. En ese caso, para cualquier B con al menos dos
= B.

elementos, C (B, ») es vacio, mientras que D (B, =)

0.F. Supongamos primero que B tiene un solo elemento, de tal manera que B = {z}. Por completitud,
x = x, por lo que x € C (B, =) . Por lo tanto, para todos los conjuntos B con un solo elemento, C (B, =) es
no vacio.

Como siguiente paso, asumimos que para todos los conjuntos B con exactamente n elementos, C (B, )
es no vacio. Sea A un conjunto con n + 1 elementos, y sea x un elemento de A. En ese caso, definimos
B = A\ {z} (el conjunto A “menos” z). Como B tiene n elementos, C' (B,*) es no vacfo, y llamamos
y a cualquier elemento de C (B,>). Si x > y, tenemos x > y = z para todo z € B, por lo que por
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transitividad « > z para todo z € B, y como ademds x > x, tenemos x > z para todo z € A, y por tanto
x € C(A,=). Si en cambio y > x (que es la otra tnica alternativa pues las preferencias son completas),
tendremos y € C' (A, >), lo que completa la demostracion.

Ejercicio 2. Sean B = {z,y} y D ={y,z}. Sea C' (B) = {z} y C (D) = {z}. Tenemos que * racionaliza a
C relativo a By = {B} pero no relativo a By = {B, D} .

Ejercicio 3. Sean X = {z,y, 2}, B = {{z,y}} vy C ({z,y}) = {z} . Tenemos que

= 1:{(x7y)7(y7z)7(x7z)v(x7x)7(y7y)7(zvz)}
= 1:{(x,y),(z,x),(z,y),(x,x},(y,y),(z,z)}

racionalizan a E = (B,C (-)).

Ejercicio 29.A. Se cumple el ADPR, porque llamando = = (8,2) e y = (8,4), no existen B y B’ en B tales
que z,y € By ademés z,y € B'.

29.B. No se cumple el ADPR. Tenemos que para x = (8,2) e y = (2,6) , se cumple que z,y € B; y ademds
x,y € By, y que sin embargo x = C' (By) pero x ¢ C (Bs).

29.C. Para cualquier cosa que elija la persona en Bs, se cumplird el ADPR. La razén es que como x =
(2,8) ¢ By, no hay forma de negar el axioma.

Ejercicio 30. Si z = z, no hay nada que demostrar, porque obtenemos z; < x1. Supongamos entonces que
x # z. Como a los precios p’ eligié z y no z, para cumplir el ADPR tiene que suceder que pz > pz (si no,
ambas canastas estarfan disponibles en ambos casos). Por otro lado, como el ingreso nuevo es p’z, y compré

z, sabemos que p’z > p’z. Restando esta tltima desigualdad de la anterior obtenemos
pz—pz>pr—pre (p-p)(z—z)>0

y como p —p’ = (p1 — p},0,...,0), obtenemos (p — p’) (z — z) = (p1 — p}) (21 — x1) > 0. Por lo tanto, como
Py > p1, ¥y © # z, debemos tener también x1 > z;.

Ejercicio 6. Debemos asumir que se satisfacen las hipétesis del axioma débil,

T,y € B z,y€e B’
zecB (V) yeo )
y que se cumple el axioma fuerte, para demostrar que z € C' (B’). Vemos que lo que hemos asumido implica

que x t? Y, pues se eligié x en B cuando estaba y disponible, y por tanto tenemos

yeC(B)
=7y
rz e B

por lo que el axioma fuerte implica « € C (B’).

Ejercicio 7. Debemos demostrar que

E}E: N {5: > es transitiva y =FC i}
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y como siempre, demostraremos que uno estd contenido en el otro y viceversa.
=EC ) Si (z,y) € =F quiere decir que existen 1, ..., 7, tales que
=P =P P, P Y.

A su vez, © =¥ x; implica que para cualquier > tal que =FC >, tenemos x > x1, y similarmente para
21 =¥ x5 y todos los demds. Obtenemos por lo tanto

TZXL 7 e m Ty 2 Y.

y como = es transitiva, z = y. Hemos encontrado que: si (z,y) € =¥ y = es cualquier relacién de preferencias

transitiva tal que =¥ C =, entonces z = y, o lo que es lo mismo, (x,y) € = . Deducimos que entonces que
(z,y) € =F= (z,9) en {=: = es transitiva y =EC =}
como querfamos demostrar.

N C =¥) Supongamos que (z,y) € N {i: > es transitivay =FC i} , ¥ debemos demostrar que (x,y) € =¥ .
Si (z,y) pertenece a la interseccién, pertenece a todas las = que son transitivas y contienen a =¥ . Por lo
tanto, para completar la demostracién alcanzard con demostrar que i? es transitiva y contiene a =% .

Supongamos que z =¥ y =¥ 2. Eso quiere decir que existen z1,z2, ...z, tales que
X EE T EE EE Tm EE Yy EE Tm+1 EE EE Tn EE z

or lo tanto, =% 2z demostrando que =¥ es transitiva. Que contiene a =¥ es obvio y se omite su
yp ; I % q T y
demostracion.

Ejercicio 32.A. ;E = (B,C(:)) satisface el ADPR? Si. No hay By B’ y z,y con = # y tales que
z,y € BNB.

32.B. No se cumple. Tenemos que 4 =¥ 6 =F 5 por lo que z =¥ y. Pero poniendo x = 4 & y = 5 en el
AFPR vemos que y € C' (4,5), x =F y y x € {4,5} pero x ¢ C (4,5).

32.C y D. Ponemos 6 ~5~4 ~ 3 ~ 2> 1. En ese caso > racionaliza a F, y por el Teorema de Richter,
satisface el ADPR.

Ejercicio 33. Calculamos el minimo ingreso que una persona debia tener en cada dia (sabiendo qué compro),
y vemos si estaban disponibles las otras canastas:

Dia 1 I{“i” =3+4+3=10 p1Te =9 prxg =11
Dia 2 Ig‘in = % =10.5 pox1 = 11;poxs = 10
Dia3 IPn =41 =11.75  pyz; = & = 11.5;psap = 12

En el primer dia, x; se revela al menos tan bueno como zs; en el segundo, x5 al menos tan bueno como x3,
y en el tercero, x3 se revela al menos tan bueno como x;. El ADPR se satisface porque no hay ningin dia
en que se repitan las dos canastas que estan disponibles.

Sin embargo, las elecciones no se pueden ser racionalizadas por una relacién de preferencias, ya que
tendriamos x1 > x9 = x3 > x1. Otra forma de verlo es usando el Teorema de Richter: como las elecciones no
satisfacen el Axioma Fuerte de la Preferencia Revelada (ya que en los dos primeros dias z; se revelé preferido

indirectamente a x3, y luego elegimos x5 y no x1), sabemos que las elecciones no pueden ser racionalizadas.
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Ejercicio 9.A. Verdadero. Lo mostraremos por absurdo. Supongo que z € B C Ay que x € D (A, ») pero
que x ¢ D (B,*).Six ¢ D(B,>) quiere decir que existe y € B tal que y = x. Pero si y € B, como B C A,

debemos tener y € A, y como y = x, no puede suceder que x € D (A, >), y eso constituye una contradiceion.

9.B. Verdadero. Lo mostraremos por absurdo. Supongo que z € B C A y que = € C (A, >) pero que
x ¢ C(B,=).Sixz ¢ D(B,>) quiere decir que existe y € B tal que no es cierto que x > y. Pero si y € B,
como B C A, debemos tener y € A, y como no es cierto que = * y, no puede suceder que z € C (A, >), y

eso constituye una contradiccién.

9.C. Falso. Sea X = R? y sea = =>, es decir, = y si y s6lo si z > y. Es ficil comprobar que > es aciclica.
Definimos A = {z € R : 1 + x> = 1}. El conjunto A es el segmento entre (1,0) y (0,1) en el plano. La
regla de eleccién D (-, =) elige a todos los elementos de cada conjunto tales que no hay ningin elemento en
el conjunto que sea mas grande de acuerdo a > . Como en A no hay ninguno que sea mds grande que otro,
tenemos que D (A4, =) = A, y por supuesto (1,0) y (0,1) estén en D (A, >). Tomemos ahora el conjunto

1
soau{(L).
Vemos (dibujelo en un papel) que

1 1
D(B,E){wERi:leer1yx1>§}u{<§,1)}

por lo que (1,0) € D (B, *) pero (0,1) ¢ D (B, >).
Un ejemplo més facil y méds corto es X = B = {z,y,z},y A= {z,y}, con = = {(z,2)} . Vemos que »=
es aciclica, y que z,y € D (A, =) pero x ¢ D (B, ) pues z > .

9.D. Falso. Sean X = {z,y,2} y == {(z,v), (y,2), (z,2), (v, 2) , (z, ), (v,y), (2, 2)} . Es decir, z ~ y, pero
también y = z > z (puede sonar raro, porque las preferencias no son transitivas, pero asf es como son las
cosas). Tenemos entonces que para A = {z,y},C (A,>) =Apuesz = zyx =y, y ademds y = = y también
y = y. También para B = {x,y, 2} se cumple que C (B,=) ={y} yaque y = x,y = y y también y = z y
ademds: z no estd ya que no es cierto que z > y; x no estd ya que no es cierto que x = z.

Ejercicio 10. Satisface el ADPR, porque como = se representa por u, es completa y transitiva, y el teorema

nos dice que entonces C' satisface el Axioma.

Ejercicio 34. Sea = la relacién de preferencias que racionaliza a (B,C (+)), es decir para todo B € B,
C(B)=C(B,»)={z:2 = y,Vy € B}.

Tomamos z € C (By U Bsg), y demostraremos que x € C (C (B1) UC (Bz)). Como z € C (B1U By, =),
tenemos que x >~ y para todo y € B; U By. Eso asegura:

a)quex € C(By)siz € Byox € C(Bsy)siz € By, porloquez € C(B)UC (B2)

b) que x = y para todo y € C (B1) UC (Bs), yaque C(B;) C By y C(Bs) C Bs.

Por lo tanto, x € C (C (B1) UC (Bs), ), como queriamos demostrar.

Tomamos ahorax € C' (C (By) UC (Bz), =)y demostraremos que C (B U Bg, =) . Comoz € C (C (B1) UC (B2) =),
debemos tener z > y para todo y € C(By) = C (B1,~) y & = z para todo z € C' (Bg) = C (Bs, =) . Como
y € C(B1,>), tenemos y = w para todo w € By; por transitividad de >, tenemos que x > y = w, por lo
que x = w para todo w € By. En forma similar, tenemos z > w para todo w € Bs y por tanto x = w para
todo w € Bs. Tenemos entonces que x = w para todo w € By U Ba, y por tanto z € C (By U B, =) como

querfamos demostrar.
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Otra forma de hacerlo es usando el teorema de Richter, y aplicando el Axioma Fuerte de la Preferencia
Revelada.

Para demostrar C' (B; U By) C C (C (B1) UC (Bs)), tomamos z € C (B; U By). Supongamos sin pérdida
de generalidad que # € B; y tomemos cualquier z € C (By); como x € C(Bi1UB2) y z € By, 2 =F 2
y por el AFPR, x € C(By). Luego, tomamos cualquier y € C (C(B1)UC (By)). Como y € C(By) U
C (B3) C B; U By, tenemos x t? y, por lo que z € C(B1) C C(B1)UC(B2) y el AFPR aseguran que
z e C(C(B)UC (By)).

Para demostrar C (C' (By) UC (Bz2)) C C(By U Bs), tomamos x € C (C (B1) U C (Bz)) . Tomemos ahora
cualquier w € C (By U By) y supongamos que w € By. Para z € C'(Bi), tenemos 2z =% w, y 2 € B; U By
por lo que z € C(B1UBs). Como z € C(C(B;)UC(Bs)) y 2 € C(By), tenemos z =¥ 2; ademis,
z2€ C(B1UBg) yax € By UDBs, entonces € C (B U Bs).

Ejercicio ??. Tomamos X = {z,y,z}, B = {z,y}, B’ = {z,y,2}, C(B) = {z} y C(B’) = {«,y}.
Esta estructura de eleccién no satisface el ADPR. Construimos ahora el resto de la funcién C' para que sea
distributiva. En principio, hay que rellenar la tabla de abajo, pero eso es muy fécil. Tomamos por ejemplo
C(z,z) =2y C(y,z) = z. Fijémonos por ejemplo en la columna de C (z,y) = x : si se elige lo mismo que
en el conjunto de la fila, estaremos bien porque en la interseccién de {x, y} con cualquiera de ellos se elige x,
y por tanto es distributiva; si se elige algo distinto, también es distributiva (la interseccién es vacia y por eso
ponemos {)). El caso de yz es atin més fdcil, porque la interseccion de las elecciones es vacfa en casi todos
los casos (salvo los triviales z e yz). Finalmente para xyz, se cumple trivialmente ya que la interseccién de

los conjuntos es siempre el conjunto mas pequeno.

x Y z  zy,C(z,y) =2 z2,C(z,2) =2 yz,C(y,2) =2 uzyz,C(z,y,2) = {z,y}
x OK 0 OK OK ) OK
Yy OK 0 0 0 ) OK
z OK 0 0 OK 0
2y, C(z,y) = OK OK ) OK
zz,C(x,2) == OK ) OK
Y2, Cly,2) = 2 OK 0
ayz,,C (2,y,2) = {z,y} OK
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Utilidad.

Como siempre, X es el espacio de los bienes de consumo, y = es una relaciéon de preferencias en X.
Diremos que una funcién u : X — R representa a la relacién de preferencia = si, y sélo si, para todo
z,y € X,

vy u()=u(y)

Ejercicio 36 Mostrar que si una funcién u representa a las preferencias > entonces > es completa y tran-

sitiva.

Ejercicio 37 Demostrar que si f : R — R es estrictamente creciente, y u : X — R representa a una

relacién de preferencias =, entonces v : X — R, definida por v (z) = f (u (z)) también representa a > .

Ejercicio 38 (del Mas-Colell et. al.) Demostrar que si X es finito y > es una relacién binaria completa y
transitiva en X, entonces existe una funcién de utilidad v : X — R que representa a = . (Ayuda: primero
considere el caso en el cual las preferencias son siempre estrictas, y construya una utilidad para ese caso.
Luego extienda el argumento para el caso mas general).

Ejercicio 39 Sea > una relacién completa y transitiva en un conjunto finito X, sea L (z) = {y : = = y} el
conjunto de los elementos de X que son peores que z, y sea |L (z)| la “cardinalidad” del conjunto L (z), el

nimero de elementos que hay en L (z). Demuestre que u () = |L (z)| representa a > .

Demostraremos ahora que una clase bastante general de preferencias en R se pueden representar con una
funcién de utilidad. Recordamos que dada una secuencia {z,};" = {z1,z2,...} en R™ decimos que {z,}}°
converge a x € R™, y escribimos z,, — x, si para todo € > 0 existe un N tal que ||z, — z|| < & para todo
n > N. Una relacién de preferencias = C X x X para X C R! es:

continua si para todo z € R!, los conjuntos U, = {y : y = 2} y L, = {y : = y} son cerrados (es decir, si
Yn =  para todo n y y, — y implican y = z, y similarmente para = > y, ).

mondétona si y > x (es decir y; > x; para todo i) implicay =z yy > ax =y > x.

estrictamente mondétona si y > = (es decir y > x y « # y) implica y > z. Como siempre, x > y quiere
decir que para todo i = 1,2,...,1, ; > y;.

Teorema 4 (Wold, 1943). Si la relacién de preferencias = en Rl+ es completa, transitiva, continua y
monétona entonces, existe u : R}, — R4 continua, tal que = = y < u(z) > u(y), para todo z,y € R.. Es

decir, existe una funcién de utilidad u que representa a las preferencias > .

Prueba: Sea e = (1,1,...,1). Por monotonia, para todo = > 0, x > 0. Ademds, por continuidad, para
todo z > 0 también debemos tener z > 0. Por lo tanto, A~ = {f € Ry : x = e} es no vacio para todo
x. También, para todo § tal que Be > z, Be = z, por lo que AT = {8 € Ry : Be = z} es no vacio. Por
continuidad AT y A~ son cerrados. Como > es completa, Ry C AT U A~. Demostraremos ahora que
AT N A~ # (). Para ver eso, mostraremos que AT = [a, 00) para algin a, y A~ = [0, b] para algtin b, y por lo
tanto, AT N A~ # (). Comencemos con AT :sir € At, para todo s > r, se > re, y por monotonia, se >~ re.

Luego, re = = y transitividad implican que se = z. Por lo tanto, AT sélo puede ser un intevalo. Como A*
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es cerrado, obtenemos AT = [a, c0) para algin a, como querfamos demostrar. La demostraciéon para A~ es
similar y se omite.

Como AT N A~ # (), existe algin « tal que ae ~ x, y como a1 > as implica aje = ase, ese « es dnico.
La funcién de utilidad que representa a > es aquella que le asigna a cada x, el nimero « tal que ae ~ .
Queda como ejercicio mostrar que esta funcién de utilidad representa a =, y que es una funcién continua. ll

Ejercicio 5. En clase. Demostrar que la funcién de utilidad que le asigna a cada x el nimero « tal que
ae ~ T representa a > .

Es muy importante destacar, aunque suene a llover sobre mojado, que las hipétesis del Teorema de
Wold son suficientes, pero no necesarias, para la existencia de una funcién de utilidad. Asi por ejemplo, si
se pide demostrar que ciertas preferencias no son representables por una funcién de utilidad, no alcanzara
con mostrar que no son continuas. En el Ejercicio 16, por ejemplo, alguna gente ha tratado de demostrar
que las preferencias no son representables mostrando que no son continuas. En esa linea hay dos errores:
las preferencias son continuas, y aunque no lo fueran, podrian ser representables. Para mostrar que unas
preferencias no se pueden representar, hay que mostrar que falla alguna condicién necesaria, tipo transitividad
o completitud. El siguiente ejercicio pretende mostrar que hay preferencias que aunque no son continuas, se

pueden representar con una funcién de utilidad.

Ejercicio 40 Recordamos que una definicién de continuidad de una funcién v es que para X C RE, una
u: X — R es continua si para toda secuencia {z, }7" tal que z,, — x, tenemos u (x,,) — u (). Muestre que

si u es una funcién de utilidad continua que representa a unas preferencias >, entonces = es continua.

Ejercicio 6. Sea X = R suponga que 0 > z para todo = # 0 y que para todo z,y € Ry = > y si y s6lo
siz >y.

Parte A. Demuestre que estas preferencias no son continuas.
Parte B. Encuentre una funcién de utilidad que represente a estas preferencias.
Parte C. La funcién de utilidad de la Parte B, ;podria ser continua?

Ejercicio 41 Sean X = R2+ y A= Ri Una persona tiene preferencias definidas sobre X U A que son
completas, transitivas y continuas. Ademads, siempre que tomemos z,y € X o a,b € A, las preferencias son
mondtonas: >y =x >=yoa>b=a>b Ademds, sia € Ay x € X, entonces a > x. Demuestre que
existe una funcién de utilidad que representa a las preferencias > .

Ejercicio 7. Parte A. Demuestre que si > es estrictamente monétona, entonces es monétona.

Parte B. Demuestre que si = es completa, transitiva, continua y estrictamente mondtona entonces, es

representable por una funcién de utilidad.

Ejercicio 8. Suponga que X = Ri y que T = y < Ax = Ay para todo A > 0. Suponga también que wu
representa a = y que u (s, s) = s. Si (1,3) ~ (2,2) ;Cudnto es u(2,6)?

El Ejercicio 1 mostré que los supuestos de completitud y transitividad son necesarios si una relacién de
preferencias tiene una funcién de utilidad. Los supuestos de monotonia y continuidad en el Teorema 10
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no son necesarios, pero daremos ahora un ejemplo de una relacién de preferencias que satisface todos los
supuestos del teorema, menos continuidad, y que no puede ser representada por una funcién de utilidad.

Ejemplo 9. Preferencias Lexicogréaficas. Sea X = Ri. Definimos la relacién de preferencias de la
siguiente manera: Vz,y € X,
1>
TELY S )
r1=11&T2 > Y2

Primero mostramos que no satisface continuidad. Tomamos = = (1,1), y

1
Yn = (1+_70)
n

Para cada n, y, > x, pero no es cierto que y = lim, 0 yn = (1,0) = x.

Para ver que estas preferencias no tienen una funcién de utilidad que las represente, recordamos que no
existe ninguna funcién inyectiva desde los reales positivos a los racionales (ver apéndice matemdtico a estas
notas). Si existiera una funcién de utilidad, tendriamos que para cada par de reales x; # 2 existirfa un par

de racionales r (z1), r (z}) tal que

u(z1,0) < 7(z1) <u(z,l) <u(@),0) <r(z)) <u(zi,1) (siz] > )
0

w(z],0) < 7)) <u(x),1) <u(x,0) <r(zi) <u(zr;,l) (siz] <)

con lo que habriamos construido una funcién que le asigna a dos reales distintos, dos racionales distintos.
Eso es una contradiccion. B

Ejemplo 10. Dado que las preferencias lexicogréficas no se pueden representar con una funcién de utilidad,
y dado que son completas, transitivas y monétonas, el Teorema de Wold nos dice que no pueden ser continuas.
Mostraremos ahora que no son continuas. Sea x = (1,1), y sea x,, = (1 + %, 0) . Tenemos que z,, = y para

todo n y que z, — x = (1,0). Si las preferencias lexicogréficas fueran continuas, tendriamos x = y, y sin
embargo, y >~ x.

Ejercicio 42 Considere una persona con preferencias > en Rf_. Formalmente, el individuo prefiere (21, 22, x3)
a (y1,Y2,y3) siy sélo si [x122 > y1y2 0 1172 = Y132 & 3 > Y3].

Parte A. Use el hecho de que las preferencias lexicogrificas no se pueden representar por una funcién de
utilidad para probar que las preferencias > tampoco tienen una representacion posible (por absurdo, muestre
que si » tuviera representacion, las lexicograficas también tendrian, que no es cierto).

Parte B. Suponga que la persona tiene que elegir una canasta 6ptima segin sus preferencias =, dada una
riqueza w > 0 y unos precios p1, p2, ps > 0. ;[ Qué canasta elegiria?

Parte C. Suponga que un investigador observa las elecciones del individuo cuando se enfrenta a todas
las restricciones presupuestales posibles con w > 0 y unos precios pi,p2,ps > 0, pero sin conocer sus
preferencias. jPodria encontrar una funcién de utilidad que genere la misma demanda? Si la respuesta es
afirmativa, proponga una; si no, explique por qué no.

Parte D. ;Por qué sus respuestas A y C son similares/difieren?

Ejercicio 11. Sea X = R?. La relacién de preferencias > estd definida por

cry o Ty * X > Y1 * Y2 .
T1 + T2 Y1+ Y2
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Determinar cuédles de las siguientes propiedades satisface esta relacion de preferencias: completa; transitiva;
continua. Para cada propiedad que se cumpla, de una demostracién. Para las que no se cumplan, de un

contraejemplo.

Ejercicio 12. Sea > mi relacién de preferencias sobre el conjunto de todos los objetos del universo. Lo
unico que me importa sobre un objeto es su tamano (en kilos) y cudn alto es (en centimetros), por lo que
el espacio de los bienes es X = R? (donde en (z1,z2), 1 es el peso y @ la altura). Supongamos que mis

preferencias son completas y transitivas y que si un objeto es al menos tan pesado y tan alto como otro,

1

entonces me gusta mds. Supongamos que los objetos (1, 1+ %) son preferidos a (2, 5) para todo n.

Parte A: ;jHay alguna relacién entre (1,1) y (2, %) que asegure que existe una funcién de utilidad que
)

representa a =? (por ejemplo, (1,1) = (2,3) o (2,3) > (1,1))

Parte B: ;Hay alguna relacién entre (1,1) y (2, %) que sea necesaria para la existencia de una funcién de
utilidad?

Parte C: jHay alguna relacién entre (1,1) y (2, %) que sea necesaria para que el Teorema de Wold asegure

la existencia de una funcién de utilidad?

Ejercicio 13. Deberes. Sean > unas preferencias definidas sobre X = R?2, con la propiedad que
(a,0) ~ (0,2a)

para todo a > 0, y tal que (a,0) > (b,0) si y sélo si, a > b. También, asuma que son transitivas y que para
todo z,y € X, A € [0,1]
r~ysS T~z (1—N)y.

Encuentre una funcién de utilidad para estas preferencias. Sugerencia: para cada x encuentre un nimero

u(z) tal que u () (1,0) ~ .

Ejercicio 14. Lo que viene en el primer parrafo es un ejemplo para motivar el ejercicio, que
empieza en el segundo parrafo. Sea Q = [0,1] el conjunto de los “estados posibles de la naturaleza”
respecto al retorno que puede tener una accién de Coca Cola. Cada w € 2 corresponde a un retorno, en
porentaje por afio, de la accién. Asi por ejemplo, si ocurre w = 0,5, quiere decir que el retorno anual de la
accion serd de 50%. El inversor puede comprar esa accién, o un bono que rinde 5% seguro y debe decidir
cual comprar. Obviamente, es muy valioso para el inversor saber lo més posible sobre cudl va a ser el w que
3,1]} : si el individuo posee esa
estructura de informacién se enterard de antemano si w va a ser menor estricto que % 0 mayor que % En

ocurrird. Por ejemplo, una “estructura de informacién” posible es {[0, %) , [

términos generales, una estructura de informacién es una “particién” de 2. Una particién es un conjunto
de subconjuntos de €, tales que la unién es €2 y que para dos subconjuntos cualesquiera, la interseccién es
vacfa. En este ejemplo, la unién de [0,4) y [3,1] es Q, y su interseccién es vacfa. Otra estructura posible
de informacién (mucho mas 1til que la anterior) es

(b4 G B}

En términos generales, las preferencias del individuo sobre estructuras de informacién deberian ser tales que

si z e y son dos estructuras de informacién tales que para cada elemento de x existe un elemento de y que
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la contiene, entonces x es estrictamente mejor que y. La idea es que la particiéon x es més “fina” que y, pues
posee mds informacion.

Ejercicio. Sea X el conjunto de todas las estructuras de informacién sobre Q = [0, 1], es decir, el conjunto
de todas las particiones de Q. Un individuo tiene preferencias > (completas, transitivas) definidas sobre X,
con la propiedad que si x es més fina que y, entonces x > y. Demostrar que no existe ninguna funcién
de utilidad que represente a = . Pista: la demostracién es parecida a lo de las preferencias Lexicograficas.
Utilice, para cada w € 2, las siguientes particiones

z, = {{a}:a<wlUlw,1]
v = {{a}:a<w}U(w1].

La particién x+ es mds fina que x,: si ocurre algiin o menor estricto que w, x,, me dice exactamente cudl,
y si no, me dice sélo que « fue débilmente mayor que w; si ocurre algin « débilmente menor que w, x* me

dice exactamente cudl, y si no, me dice sélo que « fue estrictamente mayor que w.

Ejercicio 15. Deberes. Una relacién de preferencias = en X = Rﬁ es homotética si x ~ y si y sélo si
ax ~ ay para todo a > 0. Mostrar que si una relacién de preferencias > es completa, transitiva, continua,
mondtona y homotética, entonces existe una funcién de utilidad u que representa a > y que es homogénea
de grado 1 : u(ax) = au (z) para todo a > 0 (pista: utilice la construccién en la demostracién del Teorema
de Wold).

Ejercicio 16. Sea X = Ri. Las preferencias = de un individuo se pueden describir de la siguiente manera.
Dados x e y, si 21 y y1 son “similares” (la diferencia es menor que 1) y 25 y y2 son similares, el individuo elige
la canasta con més unidades del bien 1 e ignora al bien 2. Asi, si por ejemplo, |z1 —y1]| < 1, |2 —y2| < 1y:
x1 > y1, tenemos x > y; si x1 = y1, ¢ ~ y. Si las canastas son similares en una dimensién y no en la otra, el
individuo elige la que tiene mds bienes en la dimensién que no es similar. Asi si por ejemplo |1 —y1| <1y
Yo > o + 1, tenemos y >~ x. Si ninguna de las dos dimensiones son similares, tenemos x ~ y. Demostrar que
estas preferencias no se pueden representar con una funcién de utilidad.

Ejercicio 17. Suponga que el espacio X de consumo es un subconjunto de R! y asuma que las preferencias
del individuo se pueden representar por una funcién de utilidad continua.

Parte A. Demuestre que si X es cerrado y acotado, las preferencias no son localmente no saciables (o que

son localmente saciables). Pista: una funcién continua en un conjunto cerrado y acotado tiene un méaximo.

Parte B. Si X = R? y = es tal que z = y si y sélo si u (2) > u(y) para todo z,y € X, para alguna funcién
u continua. Demuestre que esta relacién de preferencias es continua.

Ejercicio 18. Sea X = Rf_ y sea >, la relacién de preferencias lexicografica.

Parte A. Dados p1, p2, w > 0 calcule la demanda Walrasiana (el conjunto de las mejores canastas, de acuerdo
a 1, en la restricciéon pr < w).

Parte B. Dada una funcién de utilidad v : X — R dada por u (xz) = 1, calcule la demanda Walrasiana
para pi,p2, w > 0.

Parte C. En no més de tres renglones (se anula toda la respuesta si contesta en mas): explique si contradicen
algo visto en clase las Partes A y B.
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Ejercicio 19. Deberes. Sea X = R, y sean = las preferencias en X definidas por x = y si y sélo si
seno (z) > seno (y) . La siguiente grafica muestra la funcién de utilidad u (z) = seno (x).

10T
y

05T

0.0 +—+—+——1

05T

Indique cuél de las siguientes funciones de utilidad representan a >. En cada caso demuestre su respuesta.
Parte A. s(z) = seno (x?)
Parte B. ¢ (z) = seno (ax + b) para a > 0.
Parte C. v (z) = [seno (z)]’
Parte D. w (z) = a x seno(x) + b para a > 0.
Parte E. f (z) = seno (x) (seno (z) — 1)

Parte F. g (z) = \/seno ().

Ejercicio 20. Deberes. Un individuo tiene una funcién de utilidad u sobre R%r. Cuando los precios de los
bienes son (2,4) demanda solamente la canasta (1,2) y cuando los precios son (6,3) demanda solamente la

canasta (2,0) . El individuo, jestd maximizando su utilidad?

Ejercicio 21. Deberes. Sea X = R%r y sean unas preferencias = sobre X representadas por la funcién de
utilidad u (z) = x123. Indique cudles de las siguientes funciones de utilidad u; también representan a =. En

cada caso indique por qué si, o proporcione un ejemplo que muestre que x *= y pero wu; (z) < u; (y).
102

Parte A. u; (z) = ziz3

Parte B. uy (2) =logz + 2log xs

Parte C. u3(z) = 5logx; + 10logz,

Parte D. uy (z) = logx; + log a9

Parte E. us () =1 —u(z).

Parte F. ;Cémo cambian sus respuestas si X = R% 7
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Ejercicio 43 Suponga que la relacién de preferencias = en R4 X Y es completa y transitiva, y que existe
un g € Y tal que para todo y € Y, (0,y) > (0,7) . Suponga que

(i) El bien 1 es valioso: (a/,7) = (a,7) < d' > a.

(ii) Hay cantidades del bien 1 que compensan cualquier caida en el bien 2: para todo y € Y existe unt € R
tal que (0,y) ~ (¢,7).

(iii) Si el bien 1 se interpreta como dinero, asumimos que no hay efectos riqueza: para todo a,a’,t € Ry y
todo y,y' €Y, (a,y) = (a',y) & (a+t,y) = (' +1,y).

Parte A. ;jDemuestre que existe una funcién v : Y — R tal que (a,y) = (d/,¢') © a+v(y) > d +v (V).
Parte B. Demuestre que si existe una funcién v : ¥ — R tal que (a,y) > (¢/,¢y) ©a+v(y) > a +v(y),
entonces = satisface las propiedades i-iii.

Referencias: Parte de este material proviene de “Notes on the theory of choice,” de David Kreps. También
hay algo tomado de “Micoreconomic Theory,” de Mas-Colell, Whinston y Green.
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Infinitos y Temas avanzados de Utilidad

Recordamos que una funcién entre dos conjuntos X e Y es inyectiva si para todo z,2’ € X, © # 2’
implica f (x) # f(z'). Se dice que un conjunto X es infinito numerable si existe una funcién inyectiva
f: X — N. Es decir, X es numerable si puedo “contar” o “numerar” sus elementos: a cada x le asigno un

nuimero natural. El conjunto X es numerable si es finito o infinito numerable.

Ejercicio 21. Mostrar que si existe una funcién inyectiva de A a B, y B es numerable, entonces A es
numerable.

Ahora mostraremos que el conjunto N? es numerable: el conjunto de todos los pares (i,7) tales que
i,j € N es numerable. Junto con el Ejercicio 21, este resultado nos permitird demostrar ficilmente que una

gran cantidad de conjuntos son numerables.
Teorema 22. El conjunto N2 es numerable.

Demostracién. La demostracién habitual consiste en ordenar los elementos de N? en una matriz infinita,
donde el elemento a;; es precisamente (7,7), como en la figura. Luego, se comienzan a contar en el sentido

de las flechas. Es facil ver que siguiendo la flecha llegaremos a contar a todos los elementos de N2.

A (1,2) (1.3 (,4) (1,5(1,6) .oo.....
en® et en®esNes* 26 ...
e 62" 6N e.a* 357
a2 e an”....

o752 637

6" 627

@AY

Una férmula exacta para ver qué niimero le toca a cada elemento de N2 en este procedimiento es

(H=DH=Y | 5 74 i e
nii) =1 o ‘72)2(14 T —i—z‘ si z TI—] .es lmpar
A 4 sii+j es par

Demostrar formalmente que esta férmula es una inyeccién es mas complicado que mostrar que la siguiente

férmula
(t+7i—2)(i+j—1)+2

2

(correspondiente a contar los elementos de N2 por las diagonales, comenzando siempre desde arriba) es una

m(’L?]) =

inyeccién. Para ver que esta férmula es una inyeccién, notamos que si (i,5) # (¢/,7), y:
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o i+j=1i+j tendremos (i +j—2)(i+j—1)= (i’ +;5 —2)(# +5 —1), por lo que i # i’ implica
m (4, §) #m (i, j').
e i+j>i+j +1, tenemos
(+j=2(+j-D+2% _ (@ +j -1 +j)+2i
2 - 2
(45 =2+ =D +2( +5) =242 @+ =D +5 2 +20 _
2 2

m(zaj) =

(la desigualdad estricta es porque 7' > 1 implica 25’ —2 > 0y 2i > 0).
Hemos encontrado entonces una biyeccién entre N? y N, completando la demostracién. ll

Todas las demostraciones que siguen, que piden mostrar que algiin conjunto es numerable, se pueden
hacer igual que en la figura de la demostracién del Teorema 22. Analiticamente, sin embargo, es mds fécil
encontrar una inyeccién del conjunto que se quiere mostrar que es numerable hacia N2, y usar el Ejercicio
21 para concluir que el conjunto es numerable.

Teorema 23. El conjunto (0, 1) no es numerable.
Ejercicio 24. Encuentre una funcién biyectiva entre (0,1) y [0,1].

El siguiente ejercicio establece algunos resultados bédsicos sobre operaciones con conjuntos numerables.
Ejercicio 25. Sea X; un conjunto numerable, para i = 1,2, ...

Parte A. Demostrar que si para todo i # j, X; N X; = ), entonces

o0
X:U&
=1

es numerable: la unién numerable de conjuntos numerables es numerable.

Parte B. Demostrar que el X definido en la Parte A es numerable (atn si las intersecciones dos-a-dos no
son vacias).

Parte C. Demostrar por induccién que para todo n, el conjunto

n
IIszxlxxgxmxx;
=1

es numerable.

Parte D. Demostrar con un contraejemplo que

o0
v=][%
i=1
no es numerable.

Teorema. El conjunto Q. = {m/n: m,n € N} de los racionales estrictamente positivos es numerable.
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Ejercicio 26. Demostrar el Teorema anterior.

Por la Parte C del Ejercicio 25 sabemos que el conjunto Q! de todos los vectores de R! cuyas compo-
nentes son racionales es numerable. Sea {g,};~ una de esas enumeraciones. El siguiente ejercicio es una
generalizacién del teorema de Wold que no utiliza monotonfa y que utiliza el hecho que en todo conjunto
abierto (aquél cuyo complemento es cerrado) y no vacio en R! hay al menos un vector con componentes

racionales.

Ejercicio 27. Sea X = Rﬂ_ y suponga que = C X x X es completa, transitiva y continua. Muestre que
u: X — R definida mediante )

{n:z=qn}

es tal que = y < u(z) > u(y) (pista: la unién de dos cerrados es cerrado, y R, no se puede escribir como
la unién de dos cerrados disjuntos).

Un conjunto Z C X es denso para = C X x X siy sélo si cada vez que x > y, existe z € Z tal que
T = z = y. Si Z es denso, quiere decir que estd “por todos lados”. Un conjunto X es separable por > si
existe un Z numerable contenido en X que es denso para > . A continuacién presentamos el que para mi es
el teorema mds bdsico de la teorfa de la decisién.

Teorema 28 (Birkhoff). Existe una funcién u que representa a = C X x X si y s6lo si = es completa,
transitiva y separa a X (X es separable en ).

El siguiente ejercicio pide la demostracién de la existencia de una funcién de utilidad.
Ejercicio 29. Sin pérdida de generalidad, asumiremos que no existen = e y que son indiferentes.

Parte A. Demuestre que el conjunto de (a,b) € > tales que a = by no existe z € X tal que a > = > b es
a lo sumo numerable. A cada par de esa forma lo llamamos un agujero en X. (pistas: ;Puede pasar que ni
a ni b estén en el conjunto numerable Z que es denso para =7 Debe demostrar ademds que si (a,b) es un

agujero, no existe otro agujero (¢, b)).

Parte B. Sea C el conjunto que es la unién de: el conjunto numerable Z que es denso para >=; el conjunto

de todos los a; y b; para los cuales (a;, b;) es un agujero en X. Demuestre que

representa a > .
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Mi4s Ejercicios

Ejercicio 30. Sea X = Ri. Las preferencias = en X son homotéticas, monétonas, y tales que para todo
z,y € [0,1],
(2,2 —2z) ~ (y,2 —2y).

Parte A. Usando una construccién similar a la del teorema de Wold, encuentre una funcién de utilidad para

= (en esta Parte s6lo tiene que encontrarla).
Parte B. Demuestre que la funcién de utilidad encontrada en la Parte A representa a las preferencias = .

Ejercicio 31. Sea X = {a,b,c,d} y sean unas preferencias »= sobre X tales que

{(a,0), (b, ), (e, d)} € =

Parte A. Indique si cada una de las siguientes funciones de utilidad representa a =, si es imposible saber
si la utilidad representa a =, o si no la representa. En cada caso, justifique su respuesta en (a lo sumo) dos
renglones.

Parte A.i. u; (a) = u1 (b) = u1 (¢) = u1 (d) =4.
Parte A.ii. ug (a) =4, uz (b) = 3,u2 (¢) =2,us (d) = 1.
Parte A.iii. us (a) = 1,us (b) = 2,us (¢) = 3,us (d) = 4.

Parte B. Si supiéramos que > se puede representar con una funcién de utilidad, indique cudles de las
siguientes afirmaciones son verdaderas, falsas, o si no hay suficiente informacién para decir si son verdaderas

o falsas (justifique su respuesta):
Parte B.i. a > c.

Parte B.ii. a = c.

Parte B.iii. a ~ c.

Parte B.iv. ¢ > a.

Ejercicio 32. Sea el espacio de consumo X = R’ y un conjunto de funciones {u1, ug...up} conu; : R} — R
para i@ = 1,2...k continuas, estrictamente crecientes y que cumplen con la siguiente propiedad: dados i # j

existen x;; e y;; en R tales que

ui (wij) = ui (ys;) vy también u; (z55) < u; (yij)
En base a este conjunto de funciones de utilidad, definimos unas preferencias 7C R} x R} mediante:
x Yy < u;(z) >u;(y) paratodoie {1,2..k}

Parte A. Interpretar estas preferencias cuando n = k = 2 y poner un ejemplo de dichas preferencias

Parte B. Interpretar estas preferencias para n y k € N y poner un ejemplo
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Parte C. Investigue si estas preferencias son transitivas, reflexivas, completas, mondtonas y continuas.
.Son estas preferencias representables por una funcién de utilidad U : R — R? (Sugerencia: utilice las
condiciones necesarias para que una relacién de preferencias sea representable por una funcién de utilidad)

Ejercicio 33. Sea X = R2 y dos funciones f : RZ — R y g : R2 — R diferenciables y monétonas
crecientes con Of (x1,x2) /0x1 > 0, Of (x1,22) /0xa > 0, Og (x1,22) /Ox1 > 0y g (x1,22) /0x2 > 0. En
base a estas funciones, definimos la siguiente relacién de preferencias sobre X = Ri :

(x1,22) = (Y1, y2) <= ( [ (21, 22) ) > ( f(y,y2) )

9($17$2) 9(2!173/2)

Parte A. Sean f (x1,22) =21 y g(x1,22) = x2. Interpretar dichas preferencias.

Parte B. Sea el conjunto H = {(xl, x9) € Ri c w1 + a0 < 1} y preferencias - como las de la Parte A. Pruebe
que la solucién al problema del consumidor es elegir una canasta cualquiera (y1,y2) € Ri que cumpla que
ya =1 —y;. (Pista: encuentre los maximales de H segun 7 )

Parte C. Sea f(x1,22) = ¢(x1) y g(z1,22) = ¥ (22) con ¢ : Ry — Ry y ¢ : Ry — R funciones
estrictamente crecientes y derivables. Pruebe que las preferencias generadas por estas funciones son idénticas
a las preferencias de la Parte A.

Parte D. Sea f (x1,22) =log(z1) v g (z1,22) = €*2 + x9. Usando la parte anterior, encontrar los puntos

maximales de H segin 7.

Ejercicio 34. Un matrimonio debe elegir la canasta de L bienes a comprar con un vector de precios p € Ri i
y un ingreso de M > 0. Cada uno de ellos tiene preferencias g, 7~ C Ri X Ri con 7y las preferencias
del hombre y = ,s las preferencias de la mujer. Se asume que las preferencias son completas, transitivas,
continuas y monétonas. Dadas dos canastas cualesquiera z,y € RZ, el matrimonio aplica la siguiente regla
de decision:

eSiz-gy yrroymy Sx gy yT-umy, entonces se elige x antes que y

eSizrygy yy-mx 0y =g xyx Ty, entonces las canastas son indiferentes, y se elige cualquiera
de ellas

Parte A. Interprete la regla de decisién anterior.

Parte B. Defina 7~y como las preferencias derivadas de la eleccién del la familia. Es decir: © =5 y <=
se elige x antes de que y; © ~p y <= si elige cualquiera de los dos aleatoriamente. Pruebe que dadas
T,y € Rﬁ, tenemos que

TZFY <= TZnyY 6 TTMY

Parte C. Pruebe que las preferencias 77 pson monétonas. ;jSon completas?

Parte D. Suponga que L = 2 y que hay funciones de utilidades que representan las preferencias del hombre

y de la mujer: especificamente



Tome el punto (1,1). Dibuje los conjuntos de supranivel, infranivel e indiferencia de las preferencias =~ g
(es decir, la interseccion de los conjuntos de supra e infranivel) derivadas de estas preferencias para el punto

(1,1)

Parte E. En el punto anterior: ;son las preferencias =~y transitivas? jexiste funcién de utilidad que las

represente?

Ejercicio 35. Un padre tiene M > 0 pesos para gastar en regalos de navidad para sus dos hijos, que
llamaremos A y B. Hay L juguetes que puede comprarles, y cada hijo tiene preferencias sobre el espacio de

juguetes, que supondremos X = Rﬁ dadas por:

r oAy = ua(x) >ua(y)

r 7 py<=up(r)>up(y)

Con 77 4 las preferencias del hijo A y Zp las preferencias del hijo B. Las funciones de utilidad para cada
uno de los hijos, uy4 : Rﬁ —Ryup: Ri — R son ambas 2 veces diferenciables, estrictamente crecientes
en cada uno de sus argumentos, y estrictamente céncavas. El padre debe elegir un par de canastas (x4, xp)
con T € RJLF yxp € Rﬁ por lo que (z4,xp) € Rﬁ X Rﬁ. Es decir, debe elegir que regalos comprar para su
hijo A y que regalos comprar para el hijo B. A este par de canastas la llamaremos asignacién de regalos.
Decimos que el hijo A envidia al hijo B en la asignacion de regalos (x4,zp) si £p =4 T4. Similarmente,
decimos que el hijo B envidia al hijo A en la asignacién de regalos (x4, 2p) si x4 >p xp.Decimos que una
asignacion de regalos (z4,zp) es libre de envidia si A no envidia a B y tampoco sucede que B envidie a

A: estoes, Ty 54X Y TB B TA.

Hay un vector de precios de juguetes, dado por p € Rﬁ 1. El padre conoce las funciones de utilidad de sus
hijos, y elige asignaciones de regalos maximales, en el sentido siguiente: si elige una asignacion de regalos
(xa,zp) con p(zra +xp) < M, no existe ninguna otra asignacién de regalos (T4,Tg) con p(Ta,T) < M
ytal que Ty =4 T4 Yy Tp 7B TB- 0TA A Ta Y Tp =p Tp. Puede probarse que si elije asignaciones de

regalo maximales, debemos tener que p (x4 +xp) = M. Por lo tanto, asumiremos de aqui en mas que el

padre gasta M en ambas asignaciones de regalos.

Parte A. Suponga que el padre hace lo siguiente: divide el dinero M de manera equitativa ente ambos y
compra lo que ellos eligirian comprar con ese dinero. Esto genera una asignacién de regalos (x4, zp). Pruebe
que esta asignacién es tnica, que es maximal y que es libre de envidia. (Sugerencia: Para probar que es
maximal, recuerde que como las preferencias son monétonas, si x4 es el maximo de u(z4) en el conjunto
{pr <K} yu(Ta)>u(za) debemos tener que pT4 > K )

Parte B. Suponga que L = 2: es decir, hay dos juguetes: el juguete = y el juguete y. Suponga ademas, que
ua(z,y)=32In(z)+3In(y) yqueup(z,y) = 2In(z) + :In(y). La cantidad de dinero con la que cuenta
el padre es M = 40 y ambos juguetes tienen precios p, = p, = 1. Encuentre la asignacién de regalos libre
de envidia como se la define en la Parte A.

Parte C. Suponga ahora que ua = up, es decir, los hijos tienen gustos idénticos. Suponga ahora que el
padre decide hacer lo mismo que en la Parte A, pero gastanto M4 en los regalos para el hijo A, y Mp en
los regalos para el hijo B, con M4 + Mp =M y My # Mp. Llame a esta asignacién de regalos (z%,x75).
Pruebe que esta asignacién no es libre de envidia. (Sugerencia: Pruebe que si M4 > Mp entonces tenemos
que B envidia a A). Argumente que, entonces, la canasta libre de envidia para el caso de preferencias

identicas para ambos hijos es unica en este esquema.
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Utilidad, Soluciones

Ejercicio 1: Para mostrar que > es completa, notemos que para x e y cualesquiera, como u (z) y u (y) son
nimeros reales,
u(z) Zu(y) du(y) = u(x)

por lo tanto, como w representa a = tenemos que
rZyoy=zx

lo que completa la demostracién.
Para mostrar que > es transitiva, tomemos x,y y z tales que x > y e y = z. Como u representa a >
obtenemos que
u(z) = u(y) yuly) =u(z)

por lo cual u (z) > u(z), y como u representa a >, obtenemos z = z.

Ejercicio 2: Tomemos xz € X, y € X. Como u(-) representa a = se cumple:
x =y <= u(z) > uly)
Luego, como f(-) es estrictamente creciente, también se cumple:

u(@) = uly) <= f(u(@)) = f(u(y))

con lo cual tenemos que:
z =y <= fu(z)) = f(uy))

y por lo tanto la funcién v(z) = f(u(z)) también representa a .

Ejercicio 38: Haciendo caso a la ayuda, empezaremos suponiendo que las preferencias son siempre estrictas.
Sea N el nimero de elementos de X. Para demostrar que sin importar el valor de N siempre podemos
representar a = mediante una funcién de utilidad utilizaremos el método inductivo. El método inductivo
me dice que para probar que una propiedad vale para todo n € N, debo proceder probando primero que vale
para n = 1, y luego probar que vale para n si asumo que la propiedad se cumple para n — 1.

En nuestro caso, si N = 1 la demostracién es trivial Supongamos en cambio que el conjunto X tiene
N —1 elementos y que la relacion > puede representarse por una funcién de utilidad. Como hemos asumido
preferencia estricta, podemos escribir ello como que u(z1) > u(xz) > ... > u(zy—_1) Sianadimos un elemento
a X de manera que ahora el nimero de elementos es igual a N, podemos caer en alguno de los tres casos

siguientes:

a) xny = x; para todoi < N — 1
b) x; = xn para todo i < N — 1,
C) x; = xy = T;11 para algin i < N —1

En el primer caso basta con tomar u(zy) mayor que u(z1). En el segundo caso basta con tomar u(xy)
menor que u(xy_1). En el tercer caso basta con tomar u(z,) € (u(z;—1),u(z;)).

Ahora extendamos el argumento permitiendo indiferencia. Tomamos un conjunto X = {z1,x2,...,zn} C

X que cumpla que para todo ¢ # j, z; no es indiferente a x;, y para todo = ¢ {x1, x2,...,xn}, existe i tal que
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x ~ z;. Es decir, tomamos un conjunto de x tal que no hay dos indiferentes, y para cada x en X y no en este
conjunto, existe algiin z; que es indiferente a z. Una forma de encontrar este conjunto es tomar un elemento
cualquiera en X y llamarlo x1. Tomamos otro elemento de X. Si  ~ x1, lo dejo. Si no son indiferentes, lo
llamo z5. Continuamos de esa manera hasta agotar los elementos de X.

Definamos los conjuntos X,, = {y € X : y ~ z,,}. Como las preferencias son completas, y por lo tanto
reflexivas, se cumple que

N
X:LJXW

n=1
Por transitividad de las preferencias se cumple que si X,, # X,, paran € N, m € N, entonces X,, N X,,, = &.
Vemos que la parte anterior del ejercicio implica que existe v : X — R tal que z = y < u (z) > u (y) . Ahora
extendemos v de X a X, asigndndole a cada z € X, el nimero u (z;) tal que z ~ z; para algin z; € X. Es

facil comprobar que u : X — R representa a >.

Ejercicio 39. Debemos demostrar que = = y < u(z) > u (y) .
Supongamos x = y. En ese caso, si z € L (y), tenemos y * z, y por transitividad, = y = z implica = = z,
por lo que z € L (x). Obtenemos entonces u (x) = |L (x)| > |L (y)| = v (y) , como queriamos demostrar.
Supongamos ahora |L (z)| > |L (y)|, para demostrar = = y. Si tuviésemos y > x (lo contrario de =z > y
dado que las preferencias son completas) tendriamos que:
a) para cada z € L (z), y > x = z, que implica z € L (y);
b) y € L(y) (porque por completas, y = y), peroy ¢ L (x);
y por lo tanto |L (y)| > |L (x)|, una contradiccién.

Ejercicio 5: Supongamos que = > y y sean a y (3 tales que ae ~ x y e ~ y. Debemos mostrar que o > .
Si B > a, tenemos por monotonia que y ~ fe = ae ~ z, lo cual contradice x > y. Concluimos que o > f3,
como queriamos mostrar.

Supongamos ahora que « y 3 son tales que tales que o« > 3, ae ~ = y e ~ y. Debemos mostrar que
x = y. Si o = f, tenemos que = = ae = y, y por transitiva z > y. Si a« > 3, ae > e, y por monotonia,

ae > Pe. Por tanto, © > ae > fe = y por transitiva x >~ y, como querfamos demostrar.

Ejercicio 40. Tomo z, — = y x, = ¥y para todo n. Debo demostrar z > y, o lo que es lo mismo,
que u (z) > u(y). De las hipétesis obtengo w(x,) > wu(y) para todo n, y u(x,) — u(z). Si tuviéramos
u (y) > u(x), contrariamente a lo que queremos demostrar, como u (z,) — w (z), para & = ﬂﬂ%ﬂ habria
un N tal que para todo n > N

u(zn) —u(z)] <e=

lo que es una contradiccion.

Ejercicio 6.A. Recordemos que para que las preferencias sean continuas, los conjuntos U, = {z:z = z} y
L, = {z: 2z = z} deben ser cerrados. Tomemos la secuencia x,, = %, ey = 1. En este caso se cumple que
y € Ry vz, € Ry yademds y > x,, para todo n € N. Esto implica, por condicién del ejercicio que
y »= x, para todo n € N. Por otro lado la secuencia z,, = 1/n converge a 0. Si las preferencias son continuas,
se debe cumplir que 0 = lim,, o, x,, = y pues ello aseguraria que L, sea un conjunto cerrado. Sin embargo,
por condicién del problema, ello no ocurre.

6.B. La funcién de utilidad



representa a >.

6.C. No. Si u fuera continua, tendriamos que siempre que y = Z,, u (y) > u (z,) y tomando limites y usando

continuidad de u, obtendriamos u (y) > u (limx,,) , por lo que y = lim z,,, y las preferencias serian continuas.

Ejercicio 41. Usando el Teorema de Wold, encontramos u : X — R4 tal que para todo z,y € X,
z =y < u(x)>u(y). Luego, aplicando nuevamente el Teorema de Wold, encontramos v : A — R tal que
para todo a,b€ A, a = b<v(a) >v(b).

Definimos ahora
1
w (Z) — T u(z)+1 zeX
v(z) z€A

y es fdcil verificar que w representa a las preferencias = .

Ejercicio 7.A: La relacién > definida sobre X = R! es estrictamente monétona si y sélo si > y implica

T - .

Si se cumple z > y (z; > y; para todo i = 1,...,1) se cumple & > y y entonces por monotonia estricta se
cumple z > y. Por lo tanto = > y implica = > y. y las preferencias son monétonas.

7.B: Por lo demostrado en la Parte A, si > es estrictamente monétona, entonces es monétona. Por lo tanto,
se cumplen las condiciones del Teorema de Wold y la relacién es representable por una funcién de utilidad.

Ejercicio 8. Como (1,3) ~ (2,2), tenemos que
(2,6) =2(1,3) ~2(2,2) = (4,4)
y por lo tanto, u (2,6) = 4.

Ejercicio 42.A. Supongamos que la funcién de utilidad que representa a > es u : Rf’r — R. En ese caso, si
definimos v : R2 — R como v (z1,22) = u (21,1, 22) tendremos que para z,y € R?,

1>y e ol >yl e (21, 1,22) = (Y1, L y2) & ul(r, 1z2) > u(y, 1,y2)
TrLY & o S v(xr,x2) > v (Y1,y2)
1 = yi&axe > y2 & (v1,1,22) = (Y1, 1, 92) © u(x1,1,22) > u(y1,1,y2)

y eso querrfa decir que v representa a las preferencias lexicograficas.

42.B. Como la persona elegird gastar todo su ingreso en los bienes 1 y 2, podemos ignorar z3 y max-
imizar zi1z2. En ese caso, la demanda de bienes serd como en una Cobb-Douglas comin y corriente:
v = (3£.55.0).

42.C. Por supuesto una funcién de utilidad que genera esa misma demanda es la Cobb Douglas x1x5.
42.D. El comportamiento de un Cobb-Douglas ziz5 y un individuo con preferencias = es idéntico en el
mercado. El hecho que > no se puedan representar no impide que en el contexto de elegir entre canastas,
con restricciones presupuestales, no haya alguien con una funcién de utilidad que se comporte de la misma
manera.

Ejercicio 11 (por Manuel Macera). Para demostrar que no son completas basta con un contraejemplo.

Tomamos = (0,3), y = (1,1) y se cumple que ni z > y ni y = .
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Para demostrar que si son transitivas tomamos = > y = z, lo cual implica

X1 * T2 Y1 * Y2 21 % 22

Y1+ Y2

>

T1 + X2 21+ 29

Luego obtenemos
T1 * T 21 * 29

T1 + X2 21+ 22

lo cual implica x = z.

Para demostrar que son continuas basta notar que fi(z) = x1 * 22 v fa(x) = x1 + 22 son funciones
continuas. Por lo tanto, dados {z"} 7 | € R?, y € R? tal que 2™ > y para todo n € Ny 2™ — x, entonces

se cumple para todo n € N:

fi(z"™) > fi(y) lim f1(2") > fi(y) , flima™) = fi (z) > fi(y)
& N & fi coglnua & — y
f2(2") = fa(y) lim fo(2") > fa(y) fo(limz™) = fo(z) = fa(y)

como se queria demostrar.

Otra forma de demostrar continuidad es la siguiente. Tomamos z,, — =z <= Ve > 0 3 N tal que
Vn > N tenemos que ||z, —z| < € & (1, — 1) + (T2, — 12)? < €2 = VYn > N, |21, — 21| < €y
|Ton — 22| <e = z1p < X1+ EY Tay <Ta+&=>T1p + Top < T1+ T2+ 2¢

Asumimos z,, = y = tenemos que demostrar que x > y tenemos que Vn ,1Tn2 > Y1yo ¥ qQUE Tp1+Tpa >
y1 + y2. Tenemos que demostrar que no puede pasar que y1ys > T1T2 y que tampoco y; + y2 > x1 + T2

Supongamos que y; + y2 > 1+ T2, como tenemos que x,, — x, tomemos un ¢ tal que

y1+y2>(CL‘1+€)+($2+8)=$1+J}2+28>$n1+$n2

(por definicién de convergencia) lo que es absurdo porque x,1 + Zp2 > Y1 + y2 = tenemos que tener que
1+ T2 > Y1+ Y2
Un argumento similar establece que x1x2 > y1y2 y concluimos que > es continua.

Ejercicio 12.A No. Para cualquier relacién entre (1,1) y (2, %) que se elija, se puede hacer que las

preferencias se parezcan a las lexicogréficas, de tal forma que no tengan una funcién de utilidad.

12.B No. La candidata obvia para condicién necesaria, es que (1,1) = (2, %) . Sin embargo, las siguientes

1

preferencias tienen (2, 5) > (1,1) (y son monénotonas) y tienen una funcién de utilidad:

w(z) = 102122 siz # (1,1) y z122 > 1
N T2 en los demds casos.

12.C Para la aplicacién del teorema de Wold, se precisa que (1,1) = (2, %) , pues si ello no fuera cierto, las

preferencias no serfan continuas.

Ejercicio 13. Para cada x = (21, x2) , tenemos que
x
z = <:U1 —i—?z,O) ~ (0,221 + x2) = w
por lo que para A = ?’fg € [0, 1] tenemos que
2

!

T2 T
(:L‘l + 7,0) + (1 — m) (0,21‘1 +CL‘2) =z
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Por lo tanto, vemos que u (z) = x1 + %, pues x ~ (xl + %) (1,0) . Para demostrar que de hecho u representa

a >, vemos que por transitividad

T~ (acl—l—’”—;,O)

como

Yy~ yl+ﬂ70
oy BrE0 (e 20)s (ne o) e
x1+% > y1+%¢>u(x)2u(y)

Ejercicio 14 (por Manuel Macera. También se puede encontrar en el articulo “Monotone
Preferences over Information” que pueden encontrar en mi pdgina web). Para cada w €

definamos las siguientes estructuras de informacion:
T(w) = {{a:a<w}U[w,1]}

z(w) ={{a:a<w}U(w,1]}

Notemos que la estructura z(w) es més fina que T(w). Para darnos cuenta de ello supongamos que la
realizacién del estado es w. En ese caso, bajox(w) podremos saber exactamente lo que sucedié mientras
que bajo T(w) sélo sabremos que el estado pertenece al intervalo [w, 1]. Para cualquier otra realizacién del
estado, ambas estructuras nos dan la misma informacion.

Al ser z(w) més fina que T(w), se cumple z(w) > ZT(w) y por lo tanto, de existir una funcién de utilidad
deberd cumplirse que u(z(w) > w(T(w)). Supongamos que dicha funcién existe.y tomemos w1, we, tales que
w1 > wo. Utilizando el mismo argumento del parrafo anterior se cumpliria que:

z(wr) = T(w1) = z(w2) > Tws)

y por lo tanto deberfamos tener u(z(w1)) > u(T(wi1)) > u(z(wz)) > w(T(wz)). Dado que siempre podemos
introducir un nimero racional entre dos nimeros reales, es posible definir a la funcién r : Q@ — Q como
aquella funcién que asigna a cada elemento de € un racional tal que u(z(w)) > r(w) > w(T(w)). Luego se
debe cumplir que

w(z(wi)) > r(wi) > u(@(w)) > u(z(ws)) > r(w2) > u(@(w2))

<~ r(wl) > T(wg)

Como la desigualdad es estricta, lo obtenido implica que r(-) debe ser una funcién inyectiva de Q a Q. Esto
constituye una imposibilidad matematica pues Q es un conjunto numerable mientras que €2 no lo es. Por lo
tanto, no es posible encontrar una funcién de utilidad que represente las preferencias sobre las estructuras

de informacion.

Ejercicio 15: La utilidad de una canasta x en la construccién del Teorema de Wold era el nimero u () tal
que z ~ u(z) (1,1,...,1): la utilidad es el mimero tal que multiplicado por el vector (1,1, ...,1) da indiferente

a z. Como = es homotética, tenemos que azx ~ au (x) (1,1,...,1) y por tanto, u (ax) = au (x).

Ejercicio 16. En el Ejercicio 1 probamos que si una relacién se puede representar por una funcién de
utilidad, entonces es completa y transitiva. Por lo tanto, si dicha relacién no es transitiva o no es completa,
no podemos representarla mediante una funcién de utilidad. En el presente ejemplo bastard con demostrar
que la relaciéon no satisface la condicién de transitividad. Tomemos
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T = 1_0 Y= 1 z= 2
- ) - ) - 9
1 2 10
Luego, se cumple x >y > z, y z > x, lo cual viola transitividad.

Ejercicio 17. El Teorema de Bolzano-Weierstrass nos dice que toda funcién continua definida sobre un
conjunto cerrado y acotado alcanza al menos un méximo. En este caso, supongamos que la funcién de
utilidad definida sobre X cerrado y acotado alcanza el méximo en x*. Por lo tanto u(z*) > u(x) para todo
xz € X. Como u(-) representa a las preferencias, ello implica * = x para todo x € X. Esto quiere decir que
para z* no existe z € X tal que x > z* con lo cual no se cumple no saciabilidad local.

17.B. Debemos tener que si y, — y ¥ yn = = para todo n, entonces y = z. Pero y,, = x < u (yn) > u(x),y

como u es continua, eso asegura u (y) > u (z).

Ejercicio 18.A (por Manuel Macera). Asumiendo que nos importa més la cantidad del bien 1 que la

del bien 2, la demanda por el bien 2 es cero y la demanda por el bien 1 es z1 = ﬁ.

18.B: La demanda por el bien 2 es cero y la demanda por el bien 1 es z1 = ﬁ.

18.C: No hay ninguna contradiccién. Quizds uno se siente tentado a concluir que el ejemplo ilustra un caso
en el cual las preferencias lexicogrificas pueden ser representadas por una funcién de utilidad pero eso es un

error pues no hay relacién entre ambos casos.
Ejercicio 19.A. No representa: como sen2 > sen0, tenemos 2 > 0, pero

5(2) = send = sen2? < sen0? = sen0 = s (0) .
19.B. No. Ponemos a = 1y b = 7/2. Vemos que /2 > 0, pero que

t(0) = sen (g) =1>0=sen(m) :t<%> .
19.C. No. Tenemos que 0 > 37/2, pero v (0) = [sen0]* < [sen3w/2]* = v (37/2).
19.D. Si, pues z = y & senx > seny < asenxt > aseny < asent + b > aseny + b.
19.E. No, pues 7/2 > 0 pero f(0) =0= f(7/2).
19.F. No, pues g (z) no existe en algunos casos.

Ejercicio 20. No estd maximizando su utilidad. Como a los precios (2, 4) ambas canastas se pueden comprar
y sélo eligié (1,2), quiere decir que u (1,2) > w(2,0). En forma similar, como a los precios (6,3) demanda
sélo (2,0) cuando ambas canastas se pueden comprar, obtenemos u (1,2) < u (2,0), que es una contradiccién.

Otra forma un poco méds rebuscada de contestar a este ejercicio es diciendo: la funcién de utilidad
representa a unas ciertas preferencias completas y transitivas en X. Sabemos que si la relacién de preferencias
es completa y transitiva, entonces la estructura de eleccién que genera debe satisfacer el Axioma Débil de la

Preferencia Revelada. Pero es fécil verificar que los datos presentados violan el Axioma Débil.

Ejercicio 21. Asi, B, C, D, Eno. F, A, B, CSi, D y E no.
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Ejercicio 21. Si B es numerable existe una inyecciéon § : B — N. Si @ : A — B es una inyeccién,
entonces foa : A — N (la compuesta) definida por o« (a) = 8 (a(a)) para todo a € A es inyectiva, pues

a#a =a)#ald)=pFa))#B(a(d))

Ejercicio A.i. Informacién insuficiente, pues podriamos tener a > b.

Parte A.ii. Insuficiente, podriamos tener a ~ b.

Parte A.iii. No representa, pues tendriamos b > a, que necesita que a = b no sea posible.
Parte B.i. No hay suficiente informacion.

Parte B.ii. Verdadero, pues si = se puede representar por una funcién de utilidad es transitiva. Como

tenemos a = by b > ¢, deducimos a = c.
Parte B.iii. No hay suficiente informacién.
Parte B.iv. Falso, pues si pudiéramos representar a >, tendriamos a > ¢, que es inconsistente con ¢ > a.

Ejercicio 43. Solo hacemos la suficiencia de i-iii para la representacién. Por la propiedad (ii), para cada y
existe un ndmero v (y) tal que (0,y) ~ (v(y),7). Sumando a de los dos lados obtenemos por la propiedad
(iii) (a,y) ~ (a4+v(y),7), y en forma similar (a’,y’) ~ (o’ + v (y’),7). Por transitividad obtenemos que
(a,y) = (a",y) & (a+v(y),7) = (@ +v(y),9) & a+v(y) > d +v(y) (por la propiedad i).

Ejercicio 24. Sea {r,}]° una enumeracién de los racionales en (0,1). Una biyeccién entre [0,1] y (0,1) es

1 =0
T r=1
fla)y=9

Thto Slx =1, para algin n
T en otro caso

Ejercicio 25.A. Cada X; se puede escribir como X; = {xl x?

R

} A cada xF en UX; le asignamos el
vector (i, k) de N2. Esta funciéon de X a IN? estd bien definida (a cada z en X le toca un elemento de N2 y
s6lo uno) porque como los conjuntos X; no tienen elementos en comin, para cada x en X existe un unico 4
tal que x € X; y a su vez, existe un tinico k para el cual x = 2¥. El Ejercicio 21 nos dice entonces que X es

numerable.

25.B. Para B C X, B® = {z € X : x ¢ B} es el complemento de B. Recordamos la definicién de resta de
conjuntos: para dos conjuntos Ay Ben X, AA\B=ANB¢={x:x € A,z ¢ B} es el conjunto de elementos
de A que no estdn en B. Sea X; = X1, y para ¢ > 1, nos definimos
B i—1
X=X\ |Jx,
1

es decir, X; es el conjunto de elementos de X; que no estdn en los X; con j <.
Vemos que por la Parte A, UX; es numerable, y como UX; = UX; = X, tenemos que X es numerable.

25.C. Primero mostramos que la aseveracion es cierta para n = 2. Para verlo, notamos que la funcién que

le asigna a cada (le, xé) el elemento (i, j) de N? es una inyeccion.
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Luego, asumimos que hemos demostrado que Y,, = H ) X, es numerable para n < N, y mostraremos
1=

N+1

que Yyi1 = H ) X; es numerable. Como Yy11 = Yy X X411 y tanto Yy como X1 son numerables,
1=

la funcién f : Yyy1 — N? definida por

7 (v whesr) = (0.3)
es una inyeccién.

25.D. Si tomamos para todo i, X; = {0,1,2,...,9} vemos que el conjunto Y es mds grande que el conjunto
de todos los niimeros reales en (0,1), pues al niimero 0,945721... le hacemos corresponder el 945721.....€ Y.
Por lo tanto, Y no es numerable.

Ejercicio 26. El Teorema es un corolario del Ejercicio 25.B, pues con X; = {% tm € N}, cada X; es

numerable, y
[ee]
Q=X
1

Ejercicio 27. Asumimos primero que x = y para demostrar u (x) > u (y) . Tenemos entonces que x = y = ¢y
implica x = ¢, para todo n, por lo que cualquier n que esté en la sumatoria

ww) = Y o
{ny=qn}
estard en la sumatoria de z, por lo que u (x) > u (y).
Asumimos ahora que u (z) > u (y) para demostrar que = = y. Para proceder por absurdo, asumimos que
y = x. Como los conjuntos
Ly={w:z>w} y U,={z:2>y}

son cerrados, el conjunto
M={z:y>z»a}=R\,\[L,UU,]

es abierto y no vacio, por lo que existe algin N para el cual gy € M.

Tenemos entonces que

1 1 1
uly) = D m= D it > o
{n:y>=qn} {n:y>=qn >z} {n:z=qn}
1 1
= Z 2—n+u(x)22—N+u(x)>u(x)
{ny=gn>z}

y eso contradice u (z) > u (y) .

29.A. Sea (a,b) un agujero. Como debe existir un z en Z tal que a = z > b, debe suceder que z ~a 6 z ~ b.
Pero como no hay indiferencia, debe ser cierto que a = z 6 b = z. Es decir, 6 a estd en Z 6 b estd en Z. Mds
aun, (¢, b) no puede ser otro agujero con ¢ # a, pues: si ¢ > a, (¢,b) no seria un agujero; y si a > ¢, (a,b) no
serfa un agujero. Por lo tanto, el conjunto de agujeros se puede dividir en 2: los (a, b) tales que b € Z (que es
un conjunto numerable, pues a cada agujero de este tipo le asignamos un z distinto y Z es numerable); los
(a,b) tales que a € Z (también es un conjunto numerable, por los mismos argumentos). Como el conjunto
de agujeros es la unién de estos dos conjuntos numerables (no me importa que se repita algin agujero que
esté en los dos conjuntos) es un conjunto numerable.
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29.B. Sea C = ZU{a: (a,b) es un agujero} U{b: (a,b) es un agujero}, que hemos visto que es numerable.
Formalmente, la forma como defin{ C' en el enunciado fue C = Z U {{a,b} : (a,b) es un agujero}. Si x = y,
tenemos que y > ¢, implica por transitividad, z > ¢,, por lo que u(x) > u(y). Supongamos ahora que
w(z) > u(y) pero y = x. En ese caso, si (y,x) es un agujero, y € C, y obtenemos u (y) > u(x). Si (y,z) no
es un agujero, existe w tal que y > w > x, y por tanto, existe z € Z tal que y = z > w > x, y por tanto
zeCyyu(y) >u(x).

Ejercicio 30.A. Una utilidad que funciona es u (x) = 2x1+x2. Como en esta parte sélo habia que encontrarla,
con poner eso alcanzaba. La forma de encontrar la funcién de utilidad es trazando la curva de indiferencia
dada por z,y € [0,1],

(x,2 —2x) ~ (y,2 —2y).

Esa curva de indiferencia corresponde a la recta 2 — 2x1, y vemos que esa curva de indiferencia también
corresponde a la funcién de utilidad 2z + x-.

Mis formalmente, vamos a encontrar el z tal que (z,z) ~ (x,2 — 2z) ~ (y,2 — 2y) . Poniendo z = 2 — 2z,
encontramos z = 2/3. Tenemos entonces que para todo z € [0, 1],

(z,2 —2x) ~ ; (1,1). (7)

Encontraremos ahora, para cada (a,b) € R? el nimero v (a,b) tal que (a,b) ~ u (a,b) (1,1). Para cualquier

punto (a,b) € R%, tenemos que

k(a,b)_iék(a,b)(a,b)L(a,b)( 2a 2b >< 20, , 2a )

T 2a+b 2a+b 2a+b"2a+b 20+b" “2a+b
por lo que k(% (a,b) tiene la forma (z,2 — 2z) para = = Qﬁb € [0,1]. Por la ecuacién (7) obtenemos

entonces que

22
k) (a,b) ~ (g, g)

Entonces, como las preferencias son homotéticas,

2a 2a 2 2 1 1 2 2
(avb) — 2 _ 2 A~ - = (avb) ~N — - =
R (@) <2a+b’ 2a—|—b> (3’3) © gan @)~ (3’ 3)
2a+b2 2a+b 1
A (avb)N 2 5(171):7(171):m(171)
(a’b) = ~
o T () = 50 (a) ~ (1,1) )
Vemos entonces que v (a,b) = Q‘ITH’ o, en forma equivalente (multiplicando la utilidad por 3, u = 3v)

u(x) =221 + x2.

30.B. Hasta ahora no hemos utilizado la monotonia, pero la usaremos para demostrar que z > y si y sélo si
w(z) > u(y). Asumamos = > y pero 221 +x2 < 2y; +y2. Por la ecuacion (8) tenemos que I*z ~ (1,1) ~ Iy
que implica (por homotéticas) .
%x ~ .

Luego, como 2z1 + x2 < 2y1 + Y2, tenemos I > IY y por lo tanto I*/I1¥ > 1 y eso implica, por monotonia,
que =

Y~ -
lo que constituye una contradiccién.

Para mostrar que 2x1 +xo > 2y; +y- implica x > y se siguen los pasos inversos que en el parrafo anterior.
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Utilidad Esperada

En estas notas nos interesaremos en la representacién de preferencias cuando el conjunto de las posibles
elecciones es el conjunto de todas las loterfas (o distribuciones de probabilidad) sobre un cierto espacio finito
X. La mayorfa de las situaciones de interés en economifa son de elecciones en condiciones de incertidumbre.
Por eso es muy importante tener una teoria de la decisién que sea 1til para estas situaciones. Eso es lo que
trataremos de desarrollar en estas notas.

Sea X un conjunto finito, x1, ..., x, interpretado como el conjunto de las posibles canastas de consumo.
Sea P el conjunto de todas las distribuciones de probabilidad sobre X, interpretado como el conjunto de

todas las loterias cuyos premios son canastas posibles de consumo. Formalmente,

pP= {pe R" : p; € [0,1] para todo i, y Zpi = 1}
i=1
Vemos que si p,r € P, entonces para cualquier A € (0,1), el punto Ap + (1 — \)r de R™ también pertenece
a P, pues
A+ =XNr=0Ap1+ 1 =X7r1, s Apn + (1= Nry)

es tal que cada una de sus componentes es positiva, y ademds suman 1. Por lo tanto, si tomamos dos
distribuciones de probabilidad p y ¢, y las “mezclamos” como hicimos recién, obtenemos otra distribucién
de probabilidad.

Decimos que una relacién de preferencias satisface

Independencia si para todo p,q,r € Py todo A € (0,1)
prq siysolosi Ap+(1—XNrz A+ (1— M)

Continuidad si para todos los p,q,t € P tales que p = qy p = t = ¢, los conjuntos {a: ap+ (1 — ) ¢ = t}
y{a:t>=ap+ (1 —a)q} son cerrados.

Sobre Independencia se han dicho millones de cosas. A continuacién presentamos algunas.

Defensa A. Argumentaremos ahora que es un axioma intuitivo. Para ver porqué, pensemos en lo siguiente.
Supongamos que una persona, Inés por ejemplo, prefiere p a ¢, es decir p = g. Ahora, a Inés se le pregunta
cual de las siguientes dos loterfas prefiere, si Ap + (1 — A\)r o Ag + (1 — A)r. La loteria Ap 4+ (1 — A\)r se
puede interpretar como una loteria en dos etapas. En la primera etapa, se tira una “moneda”’ que tiene
probabilidad A de caer en cara, y 1 — A de caer en nimero. Si cae en cara, Inés recibird la loteria p, y si sale

nimero recibird r. Ahora, comparando Ap + (1 — A\)r con Ag + (1 — A)r, Inés piensa:

“Cuando tiren la moneda, si sale nimero, me da exactamente lo mismo Ap+(1—X)r o Ag+(1—=N)r,
porque en ambos casos recibiré r. Si sale cara, en un caso recibiré p y en el otro ¢, por lo que mi
decisién entre Ap + (1 — A)r y Ag + (1 — A)r deberfa reducirse sélo a la comparacion entre p y g.
Como dije que preferia p a ¢, debo también preferir Ap + (1 — A)ra \g+ (1 —A)r.” B

99



Defensa B. También se ha argumentado que el axioma se debe cumplir pues se puede disenar un “truco”
para que aquellos cuyas preferencias no satisfacen el axioma entreguen voluntariamente todo su dinero.
Supongamos por ejemplo que hay tres loterfas p,q y r tales que p = q y p = r. En el Ejercicio 44 se le
pide que demuestre que el axioma de Independencia implica que para todo A € (0,1), p > Ag+ (1 — A)r.
Supongamos que un individuo tiene preferencias que violan el axioma de Independencia, de tal forma que
A¢+ (1= X)7r = p, y que la persona posee la loteria p. Como Ag + (1 — A)r es preferido a p, el individuo
estard dispuesto a pagar una pequefia suma de dinero por obtener A\g + (1 — A) r y entregar p. Una vez que
haya pagado ese dinero, se ejecuta la primera parte de la loteria (la que da ¢ con probabilidad A, y r con
probabilidad 1 — A). Ahora el individuo estd en posesién de r o de ¢, y como p = q y p > r, estard dispuesto
a pagar una pequena suma de dinero por cambiar ¢ o r por p. Una vez que haya hecho el cambio, estard
igual que al principio, poseyendo p, pero dos pequenas sumas de dinero més pobre.ll

Ejercicio 44 Demuestre que si p > ¢y p > r y A € [0,1] y las preferencias son transitivas y cumplen el
axioma de Independencia, entonces p = Aqg + (1 — A) r.

Presentado asi, con esas dos defensas, el axioma suena sumamente razonable. Uno empieza a sospechar
que quizds no sea tan inocuo cuando se da cuenta que de todas las formas posibles que podrian tener las
curvas de indiferencia sobre P, cuando hay sélo 3 premios posibles, el axioma de Independencia implica que
son rectas paralelas! Veamos ahora porqué. Primero, P se puede representar por un tridngulo equildtero: si
dibujan P en R3, P es un trigngulo equildtero, y no hace falta dibujar todo el resto de R? para dibujar sélo
un tridngulo. Tomemos ahora dos loterias p y ¢ en P tales que p ~ ¢, y tomemos otro punto cualquiera s
entre medio de ellas. Eligiendo a € (0,1) apropiadamente, podemos hacer que s = ap + (1 — a)q

ap + (1-a)q

Vamos a mostrar ahora que p ~ s ~ ¢, por lo que todas las curvas de indiferencia son rectas. Como
p = q, tomando r = ¢ en el axioma de Independencia obtenemos

p = gq=ap+(l—-a)r-ag+(l—a)r<

ap+(1—a)g = ag+(l—a)ges=q

De forma similar, como ¢ = p y tomando r = ¢ en el axioma de Independencia, obtenemos

Y

q p=aq+(l—a)r=ap+(1—a)r&

ag+(1—a)g = ap+(1—a)g&q=s
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lo que termina de demostrar que ¢ ~ s. Si hacemos lo mismo con p en vez de ¢, obtenemos también que
p ~ s, como querfamos demostrar.

Falta mostrar ahora que ademds de ser rectas, las curvas de indiferencia son también paralelas. Para
eso, tomamos cualquier s que no esté entre p y ¢, y encontramos un r tal que s = aqg + (1 — a) r, como en el
dibujo.

aq +\(1-a)r

Las curvas de indiferencia son paralelas si y sélo si ag+ (1 — a)r ~ ap+ (1 — a) r, pues el tridngulo p, ¢, es
semejante al tridngulo por ag+ (1 —a)r,ap+ (1 —a)ry r:

aq A\(1-a)r

ap + (1-a)r

En efecto, aplicando el axioma de Independencia directamente, vemos que

=qg=>ap+(1l—a)r=ag+(1—a)r
pwq;&{pq p+(1—a)r=ag+(1-a)

=ap+(l—a)r~ag+(1—a)r
q>7“=>aq+(1—a)r>ap+(1—a)r} P+ ) q+( )

como queriamos demostrar.

Ademss de esta restricciéon tan seria sobre la forma de las curvas de indiferencia, se han propuesto
muchisimas criticas tanto al axioma de Independencia directamente, como a sus consecuencias. Presentamos
ahora la critica mds conocida al axioma: la paradoja de Allais.

Critica A: La Paradoja de Allais (Econometrica 21, afio 1953). En este experimento hay tres
premios posibles: z19 = 10.000.000, z; = 1.000.000 y =9 = 0, que vamos a interpretar como 10, 1 y 0
millones de délares respectivamente. A Inés se le ofrecen primero dos loterfas, p = (p10,p1,p0) = (0,1,0) y

q= (11—0%, f‘—(?o, 1—(1)0) . Tipicamente, la gente elige p, quizds porque da un millén de ddlares seguro, y no tiene
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chance de salir 0, que seria horrible. En el segundo experimento de eleccién, se le ofrecen a Inés otras dos
loterfas, 7 = (0, 155, 265) ¥ $ = (755, 0, 745 ) - Tipicamente, aca la gente elige s, quizds porque 45 y 7o son
muy parecidos, pero 10 millones es mucho mdas que un millén. El problema es que la gente que elige de esa
forma tiene preferencias que no satisfacen el axioma de Independencia. Se puede ver directamente usando
el axioma, pero es mds facil usar una de sus consecuencias para ver que en efecto se viola. En el Teorema 7
veremos que si se satisface el axioma de Independencia, existe una funcién de utilidad u : X — R tal que

prgsiysolosiy  u(z)p(z) > . u(z)q(z). Porlo tanto, la gente que elige p sobre ¢ nos estd diciendo

que
10 89 1
u(l) > Too% (10) + Too® (1) + 1—00u(0) < 11w (1) > 10u (10) + w (0) .
Por otro lado, esa misma gente, al elegir s sobre r nos estd diciendo que
10 90 11 89
—u(10) + —u (0) > —u (1) + —u (0 10w (10 0) > 11u (1l
SEu(10) 4w (0) > 2o (1) + 1 (0) € 100 (10) + . (0) > T (1)

lo que contradice la ecuacién anterior.ll

Ejercicio 45 Dibuje las loterias p,q,r y s, y muestre que las curvas de Indiferencia de alguien que elige p

sobre g y s sobre r no son paralelas. Muestre también que se viola el axioma de Independencia.

Critica B: La Paradoja de Machina (Journal of Economic Perspectives 1, ano 1987). Sea
X = {un viaje a Venecia, mirar una buena pelicula sobre Venecia, quedarse en casa}

y sean v,p y ¢ las loterfas que dan el viaje, la pelicula y gedarse con probabilidad 1 respectivamente.
Supongamos también que la persona que va a elegir prefiere ir a Venecia, antes que mirar la pelicula, y
prefiere la pelicula antes que quedarse en casa. Es decir v > p > ¢. A la persona en cuestion se le ofrecen dos
loterfas. En la primera la probabilidad del viaje a Venecia es 99,9% y la probabilidad de la pelicula es 0,1%.
Es decir, 1 = (ly,lp,lq) = (%, Tl()o’ 0) . En la segunda, la probabilidad del viaje sigue siendo 99,9%, pero
con probabilidad 0,1% sale quedarse en casa: I, = (?—88, 0, Tloo) . Como p > ¢, el axioma de independencia

nos dice que
999 1 999

= -— =
1000” " 1000" ~ 1000¢ " T000"
Sin embargo, seria sumamente razonable que la gente prefiriera ls a 7 : si uno elige [1, pero le toca la pelicula,

ll 12.

uno estard muy enojado, y preferird quedarse en casa antes que ver una pelicula sobre el lugar al que no
pudo ir.l

Critica C: La Paradoja de Ellsberg (Quarterly Journal of Economics 75, ano 1961). Hay una
urna con 200 pelotas: hay 50 Rojas y 50 Azules, y hay 100 que son algunas Verdes y otras Blancas, pero
no se sabe en qué proporcién. Al tomador de decisiones se le plantean dos problemas de decisién. En el
primero, se sacard una bola, y debe elegir entre las loterias

p: $1.000 si la bolaes R o Ay $0 en los demds casos ¢ : $1.000 si la bola es R o V y $0 en los demds casos

En el segundo problema de decisién, se saca una nueva bola, después de haber repuesto la anterior, y el

individuo debe elegir entre las loterias
r: $1.000 sila bolaes V o By $0 en los demds casos s: $1.000 si la bola es A o By $0 en los demds casos

Antes de seguir, piense qué elegiria. Tipicamente la gente elige p y 7. Esas elecciones son inconsistentes

con la teoria de la utilidad esperada y con el axioma de independencia. Para ver porqué, notamos que si
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se cumplieran todos los axiomas de la utilidad esperada, el individuo tendria una funcién de utilidad, y al
elegir p sobre ¢, nos dice que

Vv

(pr +pv) u(1000) + (pa +pp)u(0) <
pyu (1000) + pau (0) & pa > py

(PR + pa)u(1000) + (pv + pp) u (0)
pau (1000) 4+ pyu (0)

V

A su vez, al elegir r sobre s, nos dice que

(pv + pB) u (1000) + (pr 4+ pa)u(0) > (pa+ pp)u(1000) + (pr + pv)u(0) &
pvu (1000) +pau (0) > pau(1000) + pyu (0) < py > pa

lo cual contradice py > py. B

Sin perjuicio de las criticas, el axioma de Independencia es muy 1itil, pues nos da el Teorema de la Utilidad
Esperada:

Teorema 46 La relacion de preferencias > es completa, transitiva, continua y satisface independencia si y
solo si existe una funcion u: X — R tal que

p > q siy sdlo si Zu(m)p(x)zz:u(x)q(x) (9)
Ademds, v también satisface (1) si y solo si existen a >0 y b € R tales que v (.) = au(.) + b.

Prueba. Si para todo p,q en P, tenemos p ~ ¢, el teorema es trivial, por lo tanto asumimos que existen r
y s tales que r > s. La prueba serd una serie de muchos pasos.

Paso 1. Sip>qy a€(0,1), entonces p = ap+ (1 —a)q > q.

Por el “sélo si” de independencia tenemos que p = ap+ (1 — ) p = ap + (1 — ) g. También, si fuera el
caso que ap + (1 —a) g = ap + (1 — @) p = p, obtendriamos por el “si” de independencia que ¢ > p, lo cual
no es cierto. Deducimos que p = ap + (1 — «) ¢. El razonamiento para ap + (1 — «) ¢ = q es similar y se

omite.
Paso 2. Sean «, 8 € (0,1) y p > ¢q. Entonces Sp+ (1 —8)g > ap+ (1 —a)gsiysdlosi §> a.
Supongamos p+ (1 — 8) ¢ = ap+ (1 — «) ¢ para mostrar que 3 > «. Si fuera el caso contrario y o > f3,

tendriamos por independencia que

i—g(ﬁpﬁ-(l—ﬁ)Q)—l—(l—ig)p*ig 16;)(5]9_1_(1_5)(1)'

El lado izquierdo es igual a ap+(1 — «) ¢ y el derecho a Sp+(1 — ) g, por lo que obtenemos una contradiccion.

(ﬁp+(1—ﬁ)q)+(1—

Supodremos ahora que 3 > a 'y demostraremos que fp+ (1 — ) ¢ > ap+(1 — «) q. Por el paso 1 sabemos
que Bp+ (1 — 8) q > g, y aplicando el paso 1 nuevamente, vemos que

Bp+(1-B)a= S (Bp+(1—B)a) + (1—9)q=ap+<1—a>q.

B B

Paso 3. Para p,q,t € P cualesquiera tales que p > gy p = t = q, existe algin ozqu € [0,1] tal que
ol p+ (1—al,)q ~t. Por continuidad, sabemos que los conjuntos A* = {a:ap+(1—aq) =t} y A~ =
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{a:t>=ap+ (1 —aq)} son cerrados, y son no vacios. Como las preferencias son completas, sabemos que
[0,1] € AT U A~. Para demostrar que existe algin a;q tal que a;qp + (1 — O‘Zq) q ~ t alcanzard entonces
con mostrar que A" = [a, 1] para algin a, y A~ = [0, b] para algin b (sélo lo demostraremos para AT, pues
la demostracién para A~ es similar). Como sabemos que A es cerrado, alcanzard con mostrar que es un
intervalo. Por el paso 2 sabemos que si § > a'y p = ¢, entonces Sp+ (1 — 8) ¢ = ap+ (1 — ) ¢. Por lo tanto,
sia€ AT y B> «, por transitividad obtenemos que 8p + (1 — 3) g = ¢ por lo que 3 € AT

Paso 4. Para p,q,t € P cualesquiera tales que p = ¢y p =~ t > ¢, existe un tnico a;q € [0,1] tal que

t

»q con la propiedad deseada. Supongamos

oz';,qp + (1 — oz';,q) q ~ t. Por el paso 3 sabemos que existe algin «

entonces que existe otro 8 € [0, 1] tal que

Bp+(1—B)g~alp+ (1—ap,)qg~t

t
Pg’

3 t : t
Si a;,, = 1, B no puede ser menor o igual a 1, y mayor que «,,,, por lo que no hay nada que demostrar.

Demostraremos ahora que no podemos tener § > o _, el caso para § < ozqu es andlogo y serd omitido.

Asumiremos entonces que O‘Zq < 1. Tampoco podemos tener O‘Zq =0y B =1, pues quedaria
g=app+ (1—0ap)a~Bp+1—B)g=p
lo que contradice p = ¢. Si a;q =0y B €(0,1), por el paso 1 obtenemos que
t t
Bp+(1=B)g=q=a,p+ (1—a,,)qg~t

lo que contradice Sp + (1 — 8) ¢ ~ t. Supongamos entonces que aqu,ﬁ € 0,1)y B> a;q. En ese caso, el
paso 2 nos dice que fp+ (1 — ) q >~ a;qp + (1 — O‘Zq) q, lo cual es una contradiccion.

Paso 5. Existen z,, y s (piensen en minimo y méximo) tales que d,,, = p = d,,, para todo p € P (donde
d, es la loteria que le asigna probabilidad 1 a la canasta x). Primero debemos ranquear todas las loterias
5, de acuerdo a las preferencias. Dentro de las que sean las mejores (si hay més de una) elegimos una, y la
llamamos §,,. Dentro de las peores, elegimos §,, . Ahora demostraremos que d5,, >~ p para todo p € P. El
caso para p = d,  es andlogo y se omite. Tenemos que p = (p1, p2, ..., Pn), donde p; es la probabilidad que

se le asigna a x; y por lo tanto,

Aplicando independencia tenemos que

1Y

O ns

P2 P2
61'1 + 1 - 61‘]\4 i (5x1 + 1 - —61'2 + 1 - 6x]\4
P (1-p) p1 (I—=p1) <1p1 ( 1p1) )

= p15z1 +p25z2 + (1 — D1 *pQ) 600M

p3 Ps
= P10y 0oy + (1 —p1 — e —— T )
= p10a, +p2da, +(1—p1 p2)<1—p1—p2 3+< 1_p1_p2> M>

= P10y, + D205, + D305, + (1 —p1 — P2 — D3) 02y,
n

=Y
i=1

como queriamos demostrar.

1Y

Paso 6. La funcién U (p) = af;mM 5, representa a = . Debemos demostrar que U (p) > U (q) si y sélo si
P=q
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Paso 6.i. Asumamos que agzM Say agzM Sar (pues si son iguales se obtiene trivialmente que p ~ ¢). Si
O‘gmMézm = 0, obtenemos p > d,, ~ g, por lo que asumimos agzM 60, € (0,1). Si O‘gmMézm = 1, obtenemos
D~ dz,, = ¢, por lo que asumimos ozf;mM(;Im € (0,1). El paso 2 nos dice ahora que

p D q q
a5, 5. Oupy + (1 - %IMamm> Oz, = Ay S Oy + (1 - %Waz,,) Oz,

zpr9zm

como querfamos demostrar.

Paso 6.ii. Demostraremos ahora que p = ¢ implica U (p) > U (¢). No podemos tener p = q y agzM 5, =1
yaf s =0, pues tendrfamos g ~ d,,, > 0, ~ p. Tampoco podemos tener p = q y
TMTTm
q P _
1> A, 5, > s, 60 = 0

pues el paso 1 nos dice que

qr~ agths méi‘M + <1 70/5111\/1517”) 555771, s 655771, ~p

x

I . p _ p _
lo que es una contradiccién. Por lo tanto, sip = q y s, 5, =0, obtenemos a5, 5, = U

Tm

M 5Im :

Sip=qyl= agszszm > af;’IMéIm > 0, el paso 1 nos daria

q~ Oy - O‘gmMézmaIM + <1 —ag, s > Oz, ~ P

. ., . _ q p _ q
otra contradiccién. Por lo tanto, sip =gy 1= a5, 5 obtenemos s, 5, = Qs

Tm TM 55’3777,

. q P T q
Resta ahora analizar el caso en que p = ¢ y 1 > o, 5., Y, 5, >0 Si tuviéramos o5, 5 >

m

P

s, 5, el paso 2 nos dirfa que

EM xT
q q P P
9~ %, 5., 0n T (1 - O‘éxMézm) Ozp = Q5. 5, Oup T (1 - OfézMém) Oz ~ D

lo cual constituye una contradiccién. Debemos tener entonces af;m 5. 2 agm 5, » como querfamos demostrar.
M M m

m

Paso 7. Se dice que una funcién U : P — R es lineal si
Ulap+ (1 —a)q) =aU(p)+(1-a)U(q)

para todo p,q € P y a € [0,1]. Mostraremos que la funcién U dada en el paso 6 es lineal. Tenemos que por

independencia,

ap+(1—a)qg ~ a(U(p)ozy +(1—U(p))ds,)+(1
~ a(U(p)dzy +(1=U(p) (1—=a)(U(q)dzy +(1-U(q))6z,,)
= [aU(p) + (1 —=a)U(q)]6zy +[L —alU(p) — (1 —a)U(q)] s,

Por lo tanto, recordando que U (ap + (1 — a) ¢) es aquél niimero para el cual
Ulap+ (1 =a)q) ey +(1=Ulap+(1—-a)q))ds, ~ap+(1—a)q,
vemos que U (ap+ (1 —a) q) = aU (p) + (1 — a) U (q) como queriamos demostrar.

Paso 8. Mostraremos ahora que si U : P — R es lineal, existe una funcién u : X — R tal que



Para hacer eso, necesitamos una definicién. El soporte de una distribucién de probabilidad p es el
conjunto de puntos para los cuales p; > 0. Vamos a mostrar que para una U lineal, u (z) = U (4,,) satisface
(10). Lo haremos por induccién en el tamano del soporte de p. Si el soporte tiene un elemento, p = d,, para
algtin «. Por lo tanto, U (p) = U (0,) = u(z) = u (x) x 1. Supongamos ahora que (10) se cumple para todas
las distribuciones p con soporte de tamano m — 1, y tomemos una p con soporte de tamano m. También, sea
z un elemento cualquiera del soporte de p, y sea g tal que

(2) 0 siz =z
q\r)= z .
lf(p()z) siz#z

Vemos que ¢ tiene soporte de tamano m — 1y

p=p(2)d.+(1-p(2)q

Como U es lineal y satisface (10) para ¢, tenemos

Up) = p)UG)+1-p(2)U(q)

= Z)u(z —p(z 7p(x) u(x
= PEuE)+-2() T T

— S r@ul)

y la demostracién estd completa.ll

Falta ahora demostrar que v también satisface (9) si y sélo si existen a > 0y b € R tales que v (.) =
au(.) +b. Y falta también demostrar que si = tiene una representaciéon como (9), entonces satisface los

axiomas. Eso se deja como ejercicio.

Ejercicio 47 Las funciones u y v satisfacen (9) si y sélo si existen a > 0y b € R tales que v (.) = au (.) +b.

Ejercicio 48 Mostrar que si = satisface (9) para alguna funcién de utilidad u, entonces tiene que ser
completa, transitiva, continua, y satisfacer independencia.

El Teorema de la Utilidad Esperada tiene infinidad de aplicaciones. Veamos por ejemplo una de sus
primeras aplicaciones.

Ejercicio 49 Considere el conjunto de loterias AX definidas sobre un conjunto finito de nimeros X C R.
Dada una loterfa (distribucién de probabilidad) p € AX, recordamos que la varianza de p se puede calcular
como Vj, (z) = E, (2?) — [E, (2)]?, y definimos U (p) = E, (z) — Y% Para lo que sigue, suponga X =
{0,1,4}.

Parte A. De acuerdo a esas preferencias, {cudl de las siguientes dos loterias prefiere (o es indiferente entre

ellas)?: p=6; = (0,1,0) (la loterfa p da un ddlar seguro) o ¢ = (3,0, 3).
Parte B. Usando una tercera loteria (elegida por usted en forma apropiada), y mezclindola con p y ¢,

argumente que estas preferencias no satisfacen el axioma de independencia.

Aplicacién A. La Paradoja de San Petesburgo. Esta paradoja fue descrita por Daniel Bernoulli en
un articulo en 1738. Contaré la versién basada en la leyenda, no la del articulo, porque no lo he leido.

En San Petesburgo habia una casa de apuestas que le ponia un precio a cualquier apuesta, y la jugaba.
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Bernoulli se imaginé el siguiente experimento: comenzar a tirar una moneda, y si la primera cara salfa en
la n-ésima tirada, la casa de apuestas le pagaba a ¢l $2". En la época se pensaba que la gente evaluaba este
tipo de apuestas por su valor esperado: si la casa de apuestas le ponfa a la apuesta cualquier precio menor al
valor esperado de las ganancias, la persona “debia” aceptar. Haciendo un simple calculo vemos que el valor
esperado de la apuesta es infinito

Primera cara en tirada 1 2 3 4 n
aF 11 1 1 1
Probabilidad 5 1 5 16 =
Plata 2 4 8 16 AL
Producto 11 1 1 1

Si lo que crefa la gente en aquél entonces era correcto, Daniel tendria que haber estado dispuesto a pagar
cualquier suma de dinero que le propusiera la casa de apuestas. La realidad del asunto es que nadie estaria
dispuesto a pagar mucho mas que, digamos, $1000. Bernoulli se pregunté ;por qué? Su respuesta fue que
la gente tiene funciones de utilidad céncavas, para las cuales la utilidad marginal del dinero (la derivada
primera) es decreciente: a Bill Gates tener $100.000 mds, no le cambia nada, en cambio a cualquiera de
nosotros si nos cambia mucho. En particular, él dijo que la gente se comporta como si tuviera una funcién
de utilidad logaritmica: u (z) = logz. En ese caso la utilidad esperada de la apuesta propuesta, asumiendo
que después de pagar el precio la riqueza es 0, es

t

I
8

1

t
- 2

log2' = In4

o
Il

que es mucho menos que infinito!l

Un pequeno desvio en la ruta: que el valor esperado de la apuesta de San Petesburgo sea infinito quiere
decir que para cualquier precio fijo que nos quieran cobrar por cada intento, si hacemos el experimento
una cantidad suficiente de veces podemos asegurarnos que nuestra ganancia serd méas grande que cualquier
nimero que nos fijemos como objetivo. En general a la gente le suena muy raro eso. Supongamos que la casa
de apuestas nos quiere cobrar $1000 por cada intento. Si sale cara en la primera tirada, habremos perdido
$998. Si probamos otra vez, y sale cara por primera vez en la tirada 4, habremos perdido $984. Sin embargo,
hay una forma facil de convencerse que se terminard ganando cualquier cantidad de dinero casi seguramente
con suficientes tiradas.

En Excel, pongan en la celda Al la férmula “=Aleatorio()”. Esa férmula nos da un nimero aleatorio
entre 0 y 1, distribuido uniformemente: tiene la misma probabilidad de caer en cualquier parte del intervalo.
De acuerdo a esta distribucién, la probabilidad de que el nimero caiga en cada intervalo es igual a la longitud

1

del intervalo. Asi por ejemplo, la probabilidad de que caiga en el intervalo [0, 5) es %, y por tanto, es como

si la primera cara hubiera salido en la primera tirada. Similarmente, la probabilidad de que el nimero

aleatorio caiga en el intervalo [%, %—2) es 1—16 y es como si la primera cara hubiera caido en la cuarta tirada.

Esa informacion se resume en la tabla siguiente:

Intervalo 0,3) [33) %) ~ D-z=1-)
Probabilidad % % % zin
Primera Cara en Tirada 1 2 3 n

Por lo tanto, si llamamos x al nimero aleatorio, y

1 1
17—_§1'<17—



es que salié cara en la n-ésima tirada. Igualando x al primer término, y despejando n obtenemos n como
funcién de x :
log (1 —x)

1
=r&l-r=Felog(l-z)=(-n+1)log2en=1- Tog 2

1

2n—1 2

Ahf fijamos el z m&s chico para el cual sale cara en la n-ésima tirada, pero para cualquier otro z, nos
puede dar n un nimero no entero. Por lo tanto, alcanza con encontrar la parte entera de 1 —log (1 — x) /log 2.
Asi, poniendo en Excel, en la celda B1 “=Entero(1-Log(1-A1)/Log(2))” obtenemos para cada x que se genere
en la celda Al, a qué tirada corresponde la primera cara. En la celda C1 ponemos +2"B1 - 1000, y sale la
cantidad de dinero que se ganaria en un experimento, con un precio de 1000. Copiando esas tres celdas en
las filas de abajo, tanto como quieran, obtendrén lo que hubiera obtenido Bernoulli en varios experimentos
independientes. Sumando las “ganancias” de cada experimento, se obtiene que cuando el nimero de filas
se hace mds y mds grande, las ganancias van creciendo. Pero hay que ser paciente: si el experimento se
repite 65.000 veces, la cantidad esperada de experimentos donde sale la primera cara en la tirada 16 es 1, y
es obviamente la mitad para la primera cara en 17, y asi sucesivamente. A pesar de lo dificil que es sacar
cara en la tirada 16, “s6lo” se obtienen $65.536. Peor atin, la probabilidad que en todos los experimentos la

primera cara salga antes de la tirada 23 es 99%)

El ejemplo de la Paradoja de San Petesburgo sirve para ilustrar varias cosas. Primero, el concepto de
“utilidad marginal decreciente del dinero”, pero también para indicar que en general la gente es “aversa al
riesgo”, no le gusta tomar riesgos. Definiremos ahora la aversién al riesgo formalmente. Hasta ahora hemos
trabajado con un conjunto X finito, pero para tratar loterias sobre cantidades de dinero, y temas de aversién

al riesgo es mds conveniente trabajar con un intervalo X C R, y con P el conjunto de loterias sobre X.

Ejercicio 50 Suponga que X = {1,2,3}, y que = sobre A (X) = {p eR? : Z?:M’i = 1} satisfacen Inde-
pendencia. Asuma también que una funcién U representa a las preferencias =, con U (%, %, %) =U(0,1,0) =
% y U (0,0,1) = 1. jPodemos saber cudnto es U (1,0,0)7 Y si en vez de saber que > satisface independencia
supiéramos que u es lineal, jpodriamos saber cudnto es U (1,0,0)?

Definicién. Una relacién de preferencias > en P es aversa al riesgo si para toda loteria p, la loteria que
es degenerada en el valor esperado de p, dgp, es preferida a p : g, = p. Es decir, la persona prefiere recibir
una cantidad de dinero segura, antes que una loteria que en promedio da esa cantidad, pero que tiene cierta
variabilidad. Por ejemplo, una persona aversa al riesgo prefiere 1 millén de ddlares seguro, antes que una
loterfa 50-50 de recibir $0 o 2 millones de délares.

Si las preferencias se pueden representar con una funcién de utilidad esperada u, cuya derivada segunda
existe para todo x, hay otras dos condiciones que podrian parecer adecuadas para ser la definicién de aversién
al riesgo:

Condicién A. La funcién u exhibe utilidad marginal decreciente del dinero. Formalmente, esto quiere decir
que u’ es decreciente. Para ver porqué esta podria ser una definicién de aversién al riesgo, imaginemonos
un individuo que evalia quedarse seguro con la cantidad de dinero que tiene, o tomar una loterfa con
probabilidades 50 — 50 de perder o ganar un peso. En este contexto, la persona piensa:
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Si gano un peso, la utilidad marginal de ese peso va a ser chica, no gano tanto, mientras que si
pierdo un peso, la utilidad marginal de ese peso es alta, pierdo mucho. Por lo tanto, no tomo esa
apuesta.

Por lo tanto, la persona elige la opcidén sin riesgo.

Condicién B. La funcién u es céncava: para todo z,y € X y A € [0,1],
uAz+ (1= N y) > du(z)+ (1= N u(y). (11)

Para ver porqué la concavidad de u es razonable como definicién de aversién al riesgo, es 1til interpretar a
A como la probabilidad que salga x. Asi, que u sea céncava nos dice que la persona prefiere recibir seguro
Az + (1 — A\) y pesos, antes que una loterfa que le da $x con probabilidad A y $y con probabilidad 1 — X, ya
que el lado derecho de la desigualdad (11) es la utilidad esperada de esa loterfa.

Por suerte, la definicién de aversién al riesgo es equivalente a la Condicién A y a la Condicién B. Para
ver que A y B son equivalentes, alcanza con saber que si u tiene derivada segunda, u es céncava si y sélo si,
su derivada segunda es negativa. Eso es lo mismo que decir que la derivada primera es decreciente, que es
la Condicién A. Veremos ahora que u” < 0 implica concavidad (la condicién B). Por el Teorema de Taylor,
u alrededor de A\x + (1 — A) y se puede escribir, para algiin w entre z y Az + (1 — ) y, como

ull (w)
2

wiz) =uMz+1-Ny) +u' Mz+1-Ny) (z—Iz—(1-Ny)+ (z— Az —(1=Ny).

Como u” < 0, obtenemos para z =z y z =y,

IS
&
IN

uAr+ (1 =Ny +d Az+1=-Ny)(z—-A—-1-Ny)=uDz+1-Ny)+u Qz+(1-Ny)(1-X)(z—
w(y) < ue+1 =Ny +u' Qz+1 =Ny y—-Az—1=-Ny) =uPz+1=Ny)+u' Az+1 =Ny r(y—=z).

Por lo tanto, multiplicando el primer renglén por A y el segundo por 1 — A, y sumando obtenemos

Au(z) + (1= N u(y) v Az + (1 =Ny + M Qe+ 1 -Ny)1-N(z-y)+1-Nu A+ 1-Ny)A(y—2)

= u(Ax+(1-XN)y)

como queriamos demostrar.
Para ver la conexién entre la Condicién B y la definicién, vemos que la persona es aversa al riesgo si y
sélo si para todo p
u(Ep (z)) 2 Ep (u(z)). (12)

Demostraremos que la Condicién B y la definicién son equivalentes si demostramos que u es céncava si y
solo si se cumple la ecuacién (12). Eso es el contenido del siguiente Teorema.

Teorema 51 Desigualdad de Jensen. La funcion u: X — R es concava si y sélo si para toda loteria p
se cumple la ecuacion (12).

Prueba. Asumamos primero que la ecuacién (12) se cumple para todas las loterfas. Entonces, se cumple
en particular para cualquier loteria que asigne probabilidades A y 1 — X\ a = e y, por lo que la funcién debe
ser céncava.

Para ver el converso, recordamos que para las funciones céncavas, la recta y = m (x — E, (z)) +u (E, (z))

pasa por el punto (E, (z),u (E, (x))) y estéd siempre por encima de u (), cuando m es menor que la derivda
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por la izquierda de u, y mayor que la derivda por la derecha de u (las derivadas por izquierda y derecha
siempre existen) en el punto E, (x). Es decir, para un m adecuado, para todo z,

m(z — Ep (x)) + u (Ep () = u(z).

Para completar la demostracién sélo hace falta tomar esperanzas con respecto a p en ambos lados de esa
ecuacién para obtener u (E, (z)) > E, (u). Eso es equivalente a hacer lo siguiente: si p le asigna probabili-
dades positivas a x1, T2, ..., T, reescribiendo la ecuacién de arriba obtenemos

m (1 = Ep (z)) +u (B, (2))
m (z2 = Ep (z)) +u (B (2))

(1) = mpz1—pEp () +pru(Ep () > pru(e)

u(@e) = m(pawe —paEy () + pau(Ep () 2 pou (22)

ARV

(o — By (2)) + 0 (Bp (0)) 2 w(@n) = m(pun — puBp () + patt (By (2)) 2 puts (2n)
sumando la columna derecha : u(Ep(x)) > Ep (u)

como querfamos demostrar.ll

En la demostracién usamos que la cuerda y = m(z — E, (z)) + u(E, (x)) estd siempre por encima
de wu(z), para m entre las derivadas por la izquierda y por la derecha de u. Si la derivada de u existe,

m =u' (E, (z)), y la ecuacién se transforma en
u' (By (z)) (z = Ep () + u(Bp (2)) > u(@).
Para ver por qué es cierta esa afirmacién, pongamos E, () = g para que quede
u(z) < u(zo) +u (20) (T — 20) (13)

que se parece mucho a una expansién de Taylor. Recordemos que una versién de Taylor es que para todo x
y xo (no para x cerca de xg) y para algin x* entre x y xo,

u” (x*) (x B xo)z .

u(z) = u(zo) +u' (z0) (x — x0) +

Como u es céncava, obtenemos u” < 0, y por tanto se cumple la ecuacién (13).
Comentario Jensen: El Teorema 51 estd formulado en términos de una funcién céncava, pero como u es

concava si y sélo si —u es convexa, la desigualdad de Jensen también nos dice que u es convexa si y sélo si
u(E(p) < Ep(u).

Critica D: Rabin, “Risk Aversion and Expected-Utility Theory: A Calibration Theorem”,
Econometrica. Esta es una critica a la utilidad esperada, y no al axioma de Independencia.

Aplicacién B. Demanda de Activos Riesgosos. Hay un activo que cuesta 1 peso por cada unidad. Por
cada unidad del activo que el inversor compre hoy, recibird un retorno aleatorio, variable, de $z manana.
La variable z se distribuye de acuerdo a una probabilidad p. Sélo sabemos que el valor esperado de z, la
cantidad promedio de dinero que dard, es mayor que 1, es decir, E (z) > 1. Cada peso no invertido en el
activo puede ser guardado debajo del colchén hasta manana, sin generar intereses. El que debe tomar la
decisiéon de cuanto comprar posee una riqueza de $r, y tiene una funcién de utilidad esperada u : R — R,
donde u () es la utilidad del individuo de tener una riqueza de & mafiana. La funcién u es diferenciable y

concava: es averso al riesgo. Es comun que la gente piense que con sélo esa informacién no se puede decir
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nada sobre si la persona invertird algo, poco, mucho o nada en el activo riesgoso. Eso estd mal. Con la
informacién que poseemos, sabemos que el individuo invertird seguro algo en el activo riesgoso.

El tomador de decisiones debe elegir la cantidad ¢ de dinero para maximizar
Zu(r —c+cz) pi.
i

Para cada retorno z que pueda dar el activo, la riqueza manana serd r — ¢, que se guardé debajo del colchén,
més cz que es el retorno del activo, multiplicado por la cantidad de unidades. Si tomamos las condiciones
de primer orden obtenemos

d)julr—ctezi)pi :Zdu(r—c—l—czi)pi :Zu'(r—c-{-czi) (z; = 1) p;.

dc dc

i
Si esta derivada es estrictamente positiva en ¢ = 0, quiere decir que si la persona estd evaluando invertir 0 en
el activo riesgoso, puede aumentar su utilidad eligiendo algin ¢ > 0. Vemos ahora que la iltima expresion,

Zu/ (r)(zi = 1) pi =’ (1) (Z 2ipi — 1)

que es estrictamente positiva pues ), zijp; = £ (z) > 1, como querfamos demostrar.ll

evaluada en 0 es

Ejercicio 52 Suponga que un individuo tiene una funcién de utilidad u por niveles de riqueza w tal que
u' (w) > 0> u” (w) para todo w. La riqueza inicial del individuo es r > 0 y le ofrecen: “para cualquier ¢ < r
que se te ocurra, te ofrezco una apuesta en la que gands 2¢ con probabilidad %, y perdés t con probabilidad
%.” Muestre que existe algtin ¢ > 0 para el cual el individuo querra tomar la apuesta.

Ahora un “contraejemplo” a la aplicacién.

Ejercicio 53 Hay un activo que cuesta 1 peso por unidad invertida en el activo. El mismo da retornos de
2.5y 0 con probabilidad % El individuo puede comprar cualquier proporcién que quiera del activo (es decir,
si quiere comprar un décimo, puede hacerlo, pagando 1—10 pesos, y obtiene, en caso que el activo de el retorno
positivo, %) Si su riqueza inicial es un peso, y su utilidad es

(@) {x siz<l1
u(x) =

+1

2 osiz>1

{,Cual es el valor esperado de la riqueza si se adquieren z unidades del activo? ;Cudnto comprard del activo?
[ Hay algo “raro” en esto, dada la Aplicacién D?

Ejercicio 54 Considere un contribuyente con ingresos exégenos (fijos) y > 0 por el que debe pagar un
impuesto proporcional ¢ , donde 0 < t < 1. La DGI le pide una declaracién jurada en la que debe indicar el
monto que percibe de ingresos & y que pague tx. Si el contribuyente es honesto va a reportar y = x, pero
también podria declarar otro x, con 0 < x < y. Definimos z = y — z, 0 sea el monto en el que se sub-declara
los ingresos. A priori la DGI no conoce los ingresos verdaderos y por lo tanto debe implementar un sistema
de auditorias y multas para que las personas paguen sus impuestos.

Supongamos que la politica del organismo recaudador es auditar los reportes con probabilidad p € (0,1),
independientemente del valor de x. Cada vez que se audita un reporte, la DGI logra conocer y. Si x distinto
de y, el contribuyente debe pagar una multa m por cada peso de ingreso no declarado, mz, ademds del

impuesto evadido, obviamente.
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Asuma que el contribuyente es averso al riesgo, que maximiza su utilidad esperada, y que la utilidad es
derivable.

Parte A. Escriba la utilidad esperada de declarar x. Escribala también como la utilidad esperada de
subdeclarar z € [0, y].

Parte B. Encuentre un valor t* (depende de p y m) tal que el individuo evade si y sélo si ¢ > t*. (Pista:
utilice una técnica similar a la que usamos para mostrar que si una apuesta tiene valor esperado positivo, el
individuo siempre comprard un poco de la apuesta).

Parte C. Asuma que el contribuyente elige z* > 0. Pruebe que z* es decreciente en p y en m. Se puede
hacer de dos formas, una “intuitiva” o una mds técnica, usando el teorema de la funcién implicita, que
dice que si f (p,z (p)) = 0 (para cada p, elegimos z (p) para que la funcién sea 0; es una identidad, no una

igualdad), entonces 3—; = fg%g’; (y similarmente para m). Eso sale de tomar derivadas en ambos lados de

f =0, y usando la regla de la cadena:

of 0fdz dz= _ 0f/0p

8p+8zdp7 dp af/0z

Ejercicio 55 Hay un activo que cuesta $1 por unidad. El activo valdrd v; en el estado ¢ de la naturaleza
(1 =1,...,n). Para fijar ideas, supongamos que v; < vy < ... < v,. El estado i ocurre con probabilidad p;, y
asumimos que E (v) > 1. Un individuo tiene una riqueza inicial de w y una funcién de utilidad sobre niveles
finales de riqueza z dada por u(z) = z — az?, para a > 0. Asumimos que wv,, < 1/2a (eso asegura que la
funcién de utilidad sea creciente en todos los tramos relevantes).

Parte A. Encuentre la cantidad ¢ 6ptima del activo que comprara el individuo.

Parte B. Defina r; = v; — 1, el retorno del activo (el valor, menos el precio). Escriba la cantidad 6ptima
g hallada en la Parte A como funcién de la media del retorno, p = E (r;) y de la varianza del retorno,
o2 = E (r?) — (E(r))?.

Parte C. Calcule la derivada de g con respecto a pu,y verifique que podria haber dos activos, A y B tales
que tuvieran la misma varianza, 4 > g y sin embargo, el individuo demandara mas de B que de A. jcémo
es posible?

Aplicacién C. Demanda de Seguros. Este ejemplo muestra la contracara de la Aplicacién B. Esa decia
que si era beneficioso tomar riesgos, el individuo iba a tomar algo, aunque fuera averso al riesgo. Esta dice
que si existe un seguro con una prima “justa’ el individuo se asegurard completamente.

El individuo posee una casa valuada en $D, que puede quemarse con una probabilidad p, y pasar a valer
$D — L. La persona puede comprar tantas unidades como quiera, a un precio de $¢ por unidad, de un seguro
que paga $1 en caso de accidente, y 0 en caso contrario. Como hay competencia en el mercado de seguros,
los beneficios esperados de las companias son O :

g—pxl—(1-p)x0=0&p=q.

;Cudnto comprar4 el individuo de seguro si su funcién de utilidad esperada es tal que v < 07
El individuo debe elegir z, la cantidad de unidades de seguro, para maximizar su utilidad esperada

pu(D—L+z—px)+(1—p)u(D —pzx).
La condicién de primer orden (como u es céncava, es necesaria y suficiente) es

pu' (D—L—pr+x)(1—p)=0-p)u/(D—-pr)peu' (D—-L—pr+zx)=1u(D—px).

72



Como u” < 0, eso implica que se debe cumplir que D — L — pz +x = D — px o lo que es lo mismo, z = L.
Es decir, el individuo se asegura completamente. Otra forma facil de ver que la solucién es la propuesta, es
ver que si el individuo compara asegurarse completamente con tomar un seguro con x # L, ambas loterfas
tienen la misma media, D — pL, pero una tiene riesgo y la otra no: para cada =z, el valor esperado de la
riqueza es

Ew)=pD—-L—-pr+z)+(1—-p)(D—-pr)=D— Lp.

Por definicién de aversién al riesgo, el individuo preferird el seguro total.

Otra forma de verlo, es pensando que la compania de seguros ofrece dos niveles de riqueza al individuo,
wy, en caso de no fuego, y wy en caso de fuego. Es fécil ver que cada x que uno elige se tranforma en un par
de niveles de riqueza w, y wy; pero también es cierto que se puede pasar de un “contrato” w,,wy a un z,
notando que si uno elige un nivel de riqueza w,, = w, estd eligiendo el x tal que D —pr = w & x = %. Es
decir, se puede pasar de un tipo de contrato al otro. Si la firma nos ofreciera contratos en la forma w,,wy,
la, condicién de beneficio 0 serfa que el individuo puede elegir los wy y w, que quiera, mientras cumplan
pws + (1 — p) w, = D — pL. Graficando eso en un par de ejes con w,, en las abcisas y w; en las ordenadas,
queda como una restriccién presupuestal. El individuo debe maximizar pu (wys) 4+ (1 — p) w, sujeto a esa

restriccién, y se maximiza en w, = wy.

Ejercicio 56 Continuado de la Aplicacién D. El individuo posee una casa valuada en $D, que puede que-
marse con una probabilidad p, y pasar a valer $D — L. La persona puede comprar tantas unidades como
quiera, a un precio de $¢ por unidad, de un seguro que paga $1 en caso de accidente, y 0 en caso contrario.
Asuma que g > p, y demuestre que el individuo no se asegurard completamente.

Aplicacién E. La inflacién es buena para las empresas. Esta aplicacién la formularemos como un

ejercicio.

Ejercicio 57 Recordamos que una funcién es convexa si para todo a € [0, 1] tenemos f (az + (1 —a)y) <

af (x) +(1—a)f(y).

Parte A. Muestre que si f es convexa, entonces g () = —f (x) es céncava.

Parte B. Suponga que la firma puede elegir cualquier y € Y, cerrado y acotado, su espacio de posibilidades
de produccién. Recuerde que en ese caso, py son los beneficios de la firma. Definimos la funcién de beneficios
como 7 (p) = max,cy py, que son los beneficios maximos que puede obtener una firma cuando los precios
son p. Muestre que la funcién de beneficios es convexa.

Parte C. Suponga que una empresa puede elegir entre una de dos alternativas. En la primera, el vector de
precios es aleatorio, con alguna distribucién g, y la firma puede elegir su vector de produccién luego de saber
qué valor tomo el vector de precios. En la segunda alternativa, los precios estdn fijos, y son iguales al valor
esperado de los precios en la primera alternativa, digamos serdn ¢ = E, (p) . ;Cudl opcién es mejor para la

empresa’

Por qué se dice entonces que la inflacién es mala para las empresas? Explicacién: el duefio puede
ser averso al riesgo, o hay monopolios, o la incertidumbre se resuelve luego de tomadas las decisiones de
produccién. Que el dueno sea averso importa poco: si con mayor volatilidad aumenta el valor esperado de
los beneficios, eso aumentard el valor de la firma, y el duefio podria vender la firma y ganar més (seguro, con
la venta) que si se quedara con la firma. Que la firma sea un monopolio tampoco es una buena defensa de
la aseveracién “a las firmas no les gusta la volatilidad de precios”: si la firma no es tomadora de precios no
podés decir “A las empresas no les gusta que varien los precios,” y al mismo tiempo decir que “las empresas

son monopolios y por lo tanto fijadoras de precios”).
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Ejercicio 58 Calcular las utilidades esperadas de cada funcién de utilidad, con cada una de las distribu-
ciones. Algunas utilidades esperadas pueden no existir. Indique cuéles.

u(z) distribucion distribucion
al z°%paraa€[0,1] uniformeen [0,1] p(0)=ca,p(l)=1-«
all log = uniforme en [0,1] p(0) =a,p(l)=1—-«
aJll ax +b uniforme en [0,1] p(0) =a,p(1)=1—«
a.IVv —z+1 uniforme en [0,1] p(0) =a,p(1)=1—«
a. Vv —z~! uniforme en [0,1] p(0) =a,p(1)=1—«

Antes de pasar a la siguiente aplicacién, daremos la definicién de lo que significa que un individuo sea

mds averso al riesgo que otro.

Definicién. Una relacién de preferencias =5 es mas aversa al riesgo que la relacién de preferencias =1
si siempre que p =2 0z (para cualquier p y x) tenemos que p =1 dz. Es decir, podemos decir que Woody
Allen es més averso al riesgo que Schwarzenegger si siempre que Woody Allen elige algo riesgoso sobre algo
sin riesgo, Schwarzenegger también elige la alternativa riesgosa.

Esta formulacién parece bastante intuitiva, pero no muy ttil. Ademads, uno podria pensar que hay otras

condiciones que también parecen razonables, y que parecen mds utiles. Por ejemplo, damos dos ahora.

Condicién A. Para preferencias =1 y =2 que tienen funciones de utilidad w; y ug, decimos que us es maés
céncava que uy si existe una funcién céncava y creciente f tal que ug (x) = f (u1 (x)). Como habiamos

asociado concavidad a aversién al riesgo, esta parece una condicién razonable.

Condicién B. Definimos el coeficiente de aversién al riesgo de Arrow y Pratt como

u” (1‘)

Decimos que uy es més aversa al riesgo que u; si para todo z, —%5,2/((%)) > —%3,1/((—;).

Si la curvatura es una senal de aversién al riesgo, cuanto més curva u, mds grande —u”, y més grande
r (z). La razén para dividir entre u’, es que u” depende de la representacion que elijamos para >: por
ejemplo, segiin el teorema de la utilidad esperada, tanto u (x) = /o como v (x) = 21/z representan a las
mismas preferencias. Si el coeficiente de aversién al riesgo fuera sélo —u”, obtendriamos que el coeficiente de
aversion al riesgo de v seria mayor que el de u, lo cual no tendria demasiado sentido, porque son las mismas

preferencias. Al dividir entre u’ se arregla ese problema.
Por suerte, otra vez, la definicién de “maés averso al riesgo” es equivalente a las Condiciones A y B.

Teorema 59 Asuma que las relaciones de preferencias =1 y >=o se pueden representar por funciones de
utilidad w1 y us con derivadas sequndas negativas. La relacion de preferencias =2 es mds aversa al riesgo que
=1 sty sdlo sire (x) > r1 (x) para todo x, siy sélo si existe una funcion concava f tal que us (x) = f (ug (x)).

El siguiente ejercicio pide la demostracién de una de las “flechitas” (Definicién < Condicién A < Condi-
cién B: habria que demostrar 2 flechitas. La forma habitual es hacer Definicién = Condicién A = Condicién

B = Definicién. Con eso nos ahorramos de hacer las otras flechitas).

Ejercicio 60 Deberes. Muestre que si us = f(u1), para f céncava y creciente, entonces ro () > 71 ()

para todo x.
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Otra de las cosas relativamente faciles de demostrar del Teorema es el objeto del siguiente ejercicio.

Ejercicio 61 Si us = f (uy) para f céncava y creciente, entonces las preferencias > representadas por us

son mds aversas al riesgo que las preferencias > representadas por u;.

Como siempre, para que las definiciones tengan algiin sentido, deben tener alguna implicacién testeable
que sea razonable. Por ejemplo, si digo que Juan es més averso al riesgo que Pedro, deberfa suceder que, a
igualdad de otras cosas, Pedro invierte méas en un activo riesgoso que Juan. La proxima aplicaciéon demuestra

precisamente eso.

Aplicacién F. Como en la Aplicacién B, hay un activo que cuesta 1 peso por cada unidad. Por cada unidad
del activo que el inversor compre hoy, recibird un retorno aleatorio, variable, de $z manana. La variable z
se distribuye de acuerdo a una probabilidad p con E, (z) > 1. Sean u; y ug tales que us es mds aversa al
riesgo que uq, es decir, ug = f (u1) para f céncava. Sea ¢, la cantidad que resuelve el problema de elegir ¢

para maximizar
vg (¢) = Zuk (r —c+cz;) pi. (14)

Para que la definicién de “mds averso al riesgo” tenga algo de sentido en términos de comportamiento,
deberia suceder que, como uy es més averso al riesgo que uq, co deberia ser més chico que c¢;. En particular,
deberia suceder que v} (c1) sea negativo. Eso quiere decir que si al individuo 2 le preguntamos “;cémo
te sentis invirtiendo lo mismo que el superarriesgado individuo 17" él nos contesta “mal, me doy cuenta

que invirtiendo un poco menos en el activo riesgoso estoy mds contento”. Demostraremos entonces que

vh (e1) <0.
En la demostracién precisaremos usar que, como [’ es decreciente,
frla(rte(z—1))(z—1) < f(ur(r) (= - 1) (15)
pues
z>1= wifr+aiz=1)>u ()= f(luu(r+ca(z-1))) < f (u(r))
z<l= uwu(rt+az-1)<u()= f(ulr+tea(z-1))=f (u(r))

y en ambos casos se obtiene la ecuacién (15).
La condicién de primer orden para el individuo 1 en el problema (14) es

vi(a)=FEui(r—ca+caz)(z—1)=0

y tenemos que v} evaluada en c; es

dvy dEf (uy (r —c+cz2))
dc N dc

C1 c1

=E[f (wr (r+ci(z—= D))y (r+ei (2= 1) (2= 1)].

Entonces,

vy(e) = Elff (wi(r+eaz-1)uy(r+ea(z-1)) (=D <E[f (ur(r)uy(r+e(z—1)(z-1)]
frlun(r) Efuy (r+e(z=1) (z = D] = f' (u1 (r)) 0 =0

como querfamos demostrar.ll

La iltima aplicacién de utilidad esperada que consideraremos es al problema de analizar cémo cambia el
ahorro de una persona en el primer perfodo de su vida si aumenta la incertidumbre respecto a los ingresos

en el segundo periodo de su vida.
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Aplicacién G. Un individuo recibe riquezas wg y wy en los periodos 0 y 1 de su vida. Debe decidir sélo
cudnto ahorrar, o pedir prestado, en el primer perfodo de su vida, para maximizar su utilidad. La tasa de
interés es r y asumiremos que la utilidad se puede escribir como ug + u; para ug y u; céncavas. El problema

es entonces el de elegir el ahorro s para maximizar
v(s) =wug(wo—8)+ur (w+s(1+7)).
Por la concavidad de las u, la condicién de primer orden es necesaria y suficiente para encontrar el s éptimo:
V' (") =05 up (wo — s*) =u) (wr + s (L+7))(1+7)

Supongamos ahora que en vez de ser la riqueza del segundo periodo un niimero cierto wy, es wy + z, donde
z es aleatorio, y EFz = 0. En ese caso, el individuo debe elegir s para maximizar

V(s) =uo(wo— )+ Euy (w1 +z+s(1+7r)).

Otra vez, las condiciones de primer orden son necesarias y suficientes. El individuo incrementars su ahorro
con incertidumbre si y sélo si V' (s*) > 0; la utilidad marginal de ahorrar lo mismo que cuando no habia
incertidumbre. Eso se cumple si y sélo si

IN

Euj(wi+z+s(1+7r)(1+r) =
uy(wi +s (1+7r)(1+7r) < Buj(wi+z+s1+7r)(1+r) s

up(w+s*(1+7)) < Buj(wi+z+s (1+7))

ug (wo — §%)

que se cumple si y s6lo si v es convexa (ver Comentario Jensen). Es decir, el individuo aumenta su ahorro
cuando aumenta la incerticumbre (V' (s*) > 0) si y sélo si u) es convexa. Entonces, se dice que el individuo

es prudente si u} es convexa.

Ejercicio 62 Deberes. Supongamos que tengo W = 100 ddlares para invertir en dos activos. Por cada
dolar que invierto en la fabrica de Paraguas gano $10 si el afo es lluvioso y $3 si el ano es seco. Por cada
dolar que invierto en la fabrica de Helados gano $2 si el afio es lluvioso y $9 si es seco. El afio es lluvioso
con probabilidad 0.5 y seco con 0.5. Mi funcién de utilidad esperada es u (z) = \/r cuando mi riqueza final
es x. Supongamos que invierto una fracciéon A de mi riqueza en Paraguas y el resto en los Helados.

Parte A. ;Cual es el valor de A que maximiza el retorno esperado?
Parte B. ;Cudl es el valor de A que maximiza mi utilidad esperada?

Ejercicio 63 Deberes. Suponga que la relacién de preferencias = definida en el conjunto P de distribu-

ciones de probabilidad sobre X = {1,2,3} es completa, transitiva y satisface continuidad. Para todo p € P,
p= (a7 b)

querrd decir que la probabilidad que p le asigna a 1 es a, y a 2 es b. Si la relacién de preferencias es tal que

L (3 11
(0,1) >~ (5,0) y ademds (4_1’0) - (§7§>

;puede satisfacer independencia?
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Ejercicio 64 Sea X = {0,200,1.200,zy,xa} y sea P el conjunto de distribuciones de probabilidad sobre
X. Sean las loterias (distribuciones de probabilidad)

I 200 ddlares con probabilidad 0,7
N 0  ddlares con probabilidad 0,3

Vo 1.200 ddlares con probabilidad 0, 1
N 0 délares con probabilidad 0,9

y sean xj, y zps las cantidades de dinero que son indiferentes a L y M respectivamente. Diremos que una
relacién de preferencias > en P es mondtona si para todo x,y € X, la loteria que le asigna probabilidad 1 a
x es estrictamente preferida a la loteria que le asigna probabilidad 1 a y si y sélo si > y. Demostrar que si
las preferencias son transitivas y mondétonas, L = M < zp, > zps. (En la solucién no tendrén que usar las
formas especificas de L y M, pero el punto es que en experimentos mucha gente revela con sus elecciones
que L = M, pero x, < xpr).

Ejercicio 65 Suponga que X, el espacio de los premios, es X = {1,2,3} y que 03 ~ %(53 + %61. Si existe
una funcién de utilidad u tal que

prae )y u@p@)) u(@)q()

encuentre a para que la loterfa (3, 3,3) ~ ads + (1 — a) ;.

Ejercicio 66 . Un consumidor tiene una funcién de utilidad dada por u (w) = Inw. Se le ofrece una apuesta
que le dejard una riqueza final de w; con probabilidad p y ws con probabilidad 1 — p. ;Cudl es el nivel de

riqueza w que lo deja indiferente entre tener una riqueza w y aceptar la apuesta?

Ejercicio 67 Sea X = {a,b,c} y sea = en P (el conjunto de probabilidades sobre X) dada por
Pe < Qe
prqg<e )
Pe=qc Y Pb =

La interpretacion es que ¢ es muy malo y que a es mejor que b. Con argumentos similares a los utilizados
para demostrar que las preferencias lexicograficas no tenian una funcién de utilidad, se puede demostrar
que estas preferencias tampoco tienen una funcién de utilidad. Por tanto, no tienen una funcién de utilidad
esperada, y ello significa que deben violar alguno de los siguientes axiomas: completas; transitivas; continuas;
independencia. Determine cual o cudles satisface y cual o cudles viola.

Ejercicio 68 Sea X = {a,b,c} y sea P el conjunto de distribuciones de probabilidad sobre X. Suponga
que p = (pa; o) = (3,3) ~ (3,0) = (¢a, %) = ¢, y que = satisface independencia. Cudles de las siguientes
alternativas son Verdaderas, Falsas, o Imposibles de determinar con la informacién dada:

(i) 60 =p
(ii) dq = q
(iii) 0p ~ p

(iv) (5:0) > (3:5)
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Ejercicio 69 Deberes. El temeroso. Un individuo se va a ir a estudiar un doctorado a Estados Unidos.
Al terminar tendrd tres opciones: volver (v), irse a Europa (e) o quedarse en Estados Unidos (g). El sabe
que las preferencias de la gente cambian con el tiempo, y evalia que sus utilidades posibles al terminar
son u y w, que vienen dadas por: u(v) =1, u(e) =2y u(qg) =3owkw) =3, wle) =2y w(q = 1.
Para irse a estudiar, precisa elaborar una propuesta de trabajo, y cada propuesta genera una distribucién de
probabilidades sobre v, e y ¢ (por ejemplo, si en la propuesta el individuo dice que va a estudiar las causas de
la pobreza en Uruguay, la probabilidad de conseguir trabajo en Europa o Estados Unidos son 0, por lo que
volverd seguro). Como el individuo es muy temeroso, y piensa que la naturaleza le jugard una mala pasada
con la eleccion de sus preferencias en el futuro, evalia la utilidad de cada distribucién de probabilidades
P = (Pv, Pe; Pq) con la formula

U (p) = min {pyu (v) + peu (€) + pgu (q) , pow (v) 4 pew (€) + pqw ()} -

Parte B. Grafique la curva de indiferencia que pasa por la loteria que es degenerada en e, y grafique la

curva de indiferencia que pasa por la loteria (%, %, %) .

Parte C. Diga (no demuestre) cudles de los axiomas del teorema de la utilidad esperada satisfacen las

preferencias de este individuo, y si se viola alguno, demuestre con un ejemplo porqué se viola.

Ejercicio 70 Sea X = {1,2,3,4} y = definida sobre P (X). Sea u: X — R tal que

prge Y u@p) > u@)q)

y tal que u (1) =1, u(2) =3 y u(3) = 5. Para las siguientes funciones de utilidad u; : X — R determine si:
u; también representa a >; si u; no representa a >; no se puede saber si u; representa a > .

(51 (1) = 1,u1 (2) = 2,u1 (3) = 5.
u9 (1) = 1,UQ (2) = 5,UQ (3) =9.
Ejercicio 71 Deberes. Sean u(z) = —e * y v(x) = %, para a € (0,1), dos funciones de utilidad

esperada definidas sobre X = R.;. ;Se puede decir que las preferencias representadas por u son més aversas
al riesgo que las representadas por v? ;Y lo contrario?

Ejercicio 72 Sea X = {1,2,3}, y suponga que para cada p = (p1,p2,p3) € P, p; es la probabilidad que
p le asigna a que salga el nimero i. Suponga ademds que d3 > do > d1 y las preferencias = satisfacen

independencia.

Parte A. Si 6 ~ 203 + 301, encuentre el mimero « tal que (,3,3) ~ ads + (1 — a) 0.

Parte B. Si las preferencias son transitivas, jcudl de las siguientes aseveraciones es cierta: do > (i, %, %L) ,

0 (3:2:7) = 627

Ejercicio 73 Hay un activo que cuesta $1 por cada unidad comprada y, por cada unidad, da retornos de
$0, $1 y $2 con probabilidades i,i y % Una persona con una riqueza inicial de $r intenta decidir cuanto

invertir en ese activo y cuanto poner debajo del colchén. Su funcién de utilidad es u () = —e™** para a > 0.
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Parte A. Calclule el coeficiente de aversién al riesgo, el coeficiente de Arrow-Pratt.
Parte B. Asuma que r > % In 2 y muestre que la persona invertird

1
¢ =—1In2
2a
(cuando mds grande a, menos invierte en el activo riesgoso).

La funcién de utilidad de este ejercicio se llama CARA (Constant Absolute Risk Aversion), porque el
coeficiente de aversion al riesgo es constante en la riqueza. Un reflejo de eso, que no estd bueno, es que cuando
aumenta el ingreso, la persona sigue comprando la misma cantidad del activo, y eso no se corresponde con la
realidad: la gente tiende a volverse relativamente menos aversa al riesgo a medida que aumenta su riqueza.
Por eso, estas funciones de utilidad no se usan en muchos trabajos empiricos, y en cambio se usan las CRRA
(Constant Relative Risk Aversion), que son las del ejercicio siguiente.

Ejercicio 74 Considere la siguiente familia de funciones de utilidad: w(w) = 1_e;aw donde a es un

pardmetro y w la riqueza del individuo.

Parte A. Muestre que a es el coeficiente de Arrow — Pratt.

Parte B. Considere la loteria x con pagos positivos y negativos. Determine el valor de F (u(z)) cuando a
tiende a infinito.

Parte C. Muestre que u se vuelve una funcién lineal en w cuando a tiende a cero (pista: usar la Regla de
L’Hopital: para f (a) y g (a) tendiendo a 0 cuando a tiende a 0, lim,_g ;i(% = lim,_.g 54(%)

Ejercicio 75 Deberes. Hay un activo que cuesta $1 por cada unidad comprada y, por cada unidad, da

retornos de $0, $1 y $2 con probabilidades i, i y % Una persona con una riqueza inicial de $r intenta decidir

cudnto invertir en ese activo y cudnto poner debajo del colchén. Su funcién de utilidad es w (x) = z* para
ac(0,1).

Parte A. Muestre que la persona invertird

en el activo riesgoso, y que pondrd w — ¢* debajo del colchén.

Parte B. Muestre que cuanto més chico es a, menos se invierte en el activo riesgoso.

Parte C. Muestre de al menos dos formas que cuanto mas chico es a, més aversa al riesgo es la persona.
Ejercicio 76 Sea u (z) una funcién de utilidad con v” < 0.. Hay un activo z que se rinde M > 0 o 0 con

probabilidad 1/2 cada uno, por unidad de dinero invertida. El individuo puede invertir la proporcién que
desee de su riqueza w en el activo, y el resto lo puede poner debajo del colchén.

Parte A. Si M = 2, ;Cuanto invertird en 27
Parte B. Si M > 2, y u(z) = —e"*, ;Cudnto invertird en z?

Parte C. ;Cémo cambia su demanda cuando cambian r y M? Sin hacer los cdlculos en la Parte B, jsabemos
algo sobre como cambia la demanda cuando cambia r?
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Ejercicio 77 Mostrar que si para todot € P, Uy ={p:p =t} y L = {p:t = p} son cerrados, entonces >
es continua. Es decir, el axioma de continuidad que usamos antes (en las notas de preferencias y utilidad)

es mas fuerte que el que estamos usando en estas notas.

Ejercicio 78 Deberes. Sea z un activo que se distribuye uniformemente en [0,2], y que cuesta $1 por
unidad invertida. Sea w = 2 la riqueza inicial, y sea u (z) = —z (x — 20) la utilidad si la riqueza final es z.

Parte A. Encuentre la inversién éptima. Explique.
Parte B. Encuentre la inversién éptima si z se distribuye uniformemente en [0, 3].

Ejercicio 79 Deberes. Muestre que para una funcién de utilidad dada por u () = —e™**, si una loteria
es mejor que otra para una riqueza inicial w, entonces sigue siendo mejor para cualquier otro nivel inicial de
riqueza w’ # w. Es decir, suponga que la loterfa 7 arroja premios x1, ..., &, con probabilidades 71, ..., 7, y
que la loterfa p arroja los mismos premios con probabilidades py, ..., p,,- Muestre que si 7 es mejor que p para
el nivel de riqueza inicial w, entonces sigue siendo mejor que p para cualquier otro nivel de riqueza inicial
w’. Como el nivel de riqueza inicial no afecta las actitudes frente al riesgo de quienes tienen esta funcién de
utilidad, se las llama de aversién al riesgo constante. Para verificar que el nombre tiene sentido, calcule el

coeficiente de aversién al riesgo de esta utilidad, y verifique que no depende del nivel de riqueza.

El gjercicio anterior estd en un cierto contraste con el que viene. En “el mundo real” uno observa que la
gente m4s rica suele ser menos aversa al riesgo que la mds pobre. Alguien podria pensar que son mds ricos
porque son menos aversos al riesgo (y que por eso tomaron decisiones con mayores retornos esperados). Pero
uno se da cuenta que en realidad quizés sea que realmente la gente se vuelve menos aversa a medida que crece
su riqueza (que la misma persona, si fuera mds rica, serfa menos aversa). Para ilustrar esta idea, pensemos
en lo siguiente: si a mi me ofrecieran 100 millones de délares seguro, o una loteria de 500 con probabilidad
% o 0 con probabilidad %, yo tomaria los 100 millones seguros. Pero si en vez de eso me ofrecen 1000 délares
seguro o una loterfa de 5000 con probabilidad % o 0 con probabilidad %, tomarfa la segunda. Posiblemente
haya gente con una riqueza menor que la mfa, que tomarfa los 1000 délares seguros. Para captar este cambio
en la aversion al riesgo de la gente, los economistas usan funciones de utilidad que se vuelven menos aversas
al riesgo a medida que crece la riqueza inicial.

**no usado**

Ejercicio 80 A un inversor con una riqueza inicial de $w le ofrecen dos loterfas $1 seguro, o una loterfa

en la que pierde $1 o gana $4 con igual probabilidad. Encuentre los valores de w para los cuales prefiere la

primera loterfa. **respuesta w < %. K

Ejercicio 81 **no usado** Con cara, si una loterfa tiene mayor valor esperado que otra, existe una riqueza

inicial w tal que si el individuo tiene w o més de riqueza inicial, preferird la de mayor valor esperado. **

2%k

con
taylor y con cotas
Ejercicio 82 **no usado** Los premios posibles son (5,10, 15,20, 30) y hay dos loterfas p = (0, 2,0, 3,0) y
q= (%, 0, g, 0, %) . Muestre que cualquier tomador de decisiones que sea averso al riesgo y cuyas preferencias
cumplen independencia preferird p a q.

Ejercicio 83 Hay una loteria que arroja un pago Alto, A, con probabilidad p, y uno Bajo, B, con proba-
bilidad 1 — p. El individuo posee una riqueza inicial w y tiene una funcién de utilidad esperada u.
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Parte A. Encuentre el precio m mds chico al cual el individuo estaria dispuesto a vender la loteria, si fuera
el dueno.

Parte B. Encuentre el precio 7 méds alto que estaria dispuesto a pagar por la loteria si no fuera el dueno.

Parte C. ;Por qué no son iguales los precios? Argumente que es por el efecto de la riqueza inicial sobre la

aversion al riesgo. jBajo qué condiciones sobre A, B,p y u son iguales?

Parte D. Sean A =25 B=7 w=9,p=1/2y u(x) = y/z. Calcule los precios de compra y venta para
este caso. Verd que es mds grande el de la Parte A que el de la Parte B, y eso es porque esta utilidad, y

cualquiera de la forma z® tienen aversién al riesgo decreciente en x (Verifiquelo).

Parte E. Sean A =25 B=7,w =9, p=1/2y u(x) = —e~®. Calcule los precios de compra y venta para
este caso.

Ejercicio 84 Suponga que X = {1,2,3} y sea P = {p eR? : Y p = 1} . El individuo tiene preferencias
>=C P x P que satisfacen independencia y son transitivas. El vector p € P le asigna una probabilidad p; a
1,ppa2yp3=1—p; —ps a3. Asuma que

1 3
63* (07071) - (07170) *52 ~ <Z7O7Z> .

Parte A. Muestre que las preferencias del individuo son completas.

Parte B. Encuentre una vector u € Ri (una funcién de utilidad) que represente a las preferencias: p = ¢ <
> piu; > > qiu;. Pista: fijese en la demostracion del teorema de von Neumann y Morgenstern qué utilidad
se le asigna a cada loterfa, y trate de construir la utilidad en este caso de la misma forma. En particular,
encuentre U (0;) para i = 1,2,3, y luego observe que

b2 D3 b2 P3
U = U 1,0,0) + (1 - 0, ; =pU(1)+(1—=p1)U |0, T
(p) (pl( )+ ( p1)< 1—p 1—p1)> pU(61) + (1 —p1) ( 1—p 1—p1>

= pUE)+0-p)U (1 2 (0,1,0) + 72 (0,0, 1>> = p1U (01) +p2U (32) + psU (33)

Ejercicio 85 Sea X = {1,2,3} y sea
3
pP= {p€R3 :p; € [0,1] para todo i, y Zpil},
i=1

con la interpretacién que p; es la probabilidad que p le asigna a 1, po la probabilidad de 2, y ps3 la probabilidad
de 3. Suponga que unas preferencias > sobre P satisfacen independencia. Suponga que

52 = (07170) ~ (%707%) .

Parte A. Asuma que existe u € R? tal que p = ¢ & u.p = > w;p; > Y w;q; = u.q, y utilizando esta funcién

de utilidad muestre que (%, %, 0) ~ (%, 0, %)

Parte B. Usando slo el axioma de independencia muestre que (3,%,0) ~ (2,0,4).
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Ejercicio 86 Calcule la utilidad esperada de un individuo que: tiene una riqueza inicial de » = 10; que
compra 2 unidades de un activo que cuesta $1 por unidad; que ese activo tiene un retorno aleatorio de z,
por cada unidad comprada, con z € Ry ; que z tiene una densidad dada por

f(z) =2e7%;
y la funcién de utilidad del individuo, para una riqueza final de w es —e 3",

Ejercicio 40. There are three prizes an individual can receive 1 = $1, x5 = $4 and z3 = $9.

Part A. 4% If we set U (1) = 0 and U (z3) = 1, what is U (22) according to the Von Neumann Morgenstern
construction of utilities?

Part B. 4% If the individual had to pay $4 to participate in a bet that would give $1 with probability %
and $9 with probability %, would that bet be actuarially fair?

Part C. 4% Suppose the individual’s initial wealth is $4, and that he has a utility function U (z) = 3@
Would he take the bet in Part B?

Part D. 6% Suppose the individual with utility \/z has a car worth $9 (and no other wealth) which would
be worth $1 if it caught fire, and assume that the probability of fire is 5/8. What would be a fair price for

the insurance, and how much would the individual be willing to pay?

Ejercicio 41: Suponga que un agente, con utilidad sobre la riqueza u (w) = w* con @« € R va a un casino a
jugar a la ruleta. Suponga que puede jugar a cualquiera de los juegos de la ruleta una cantidad z € [0, +00).
(es decir, no es discreto: si quisiera, podria jugar 7 pesos, o V2 pesos). También implica que el individuo
no tiene cota para endeudarse: puede jugar todo lo que quiera. Se supone que la ruleta tiene 0 y 00 entre
las posibilidades.

Parte A. Sabiendo que la casa paga 36 a 1 lo apostado a un numero cualquiera: jcual es la apuesta 6ptima
del agente dependiendo del pardmetro o 7

Parte B. Sabiendo que la casa paga 2 a 1 lo apostado a color: jcual es la apuesta 6ptima del agente
dependiento del pardmetro a?

Parte C. Encuentre el rango de valores para « para los cuales el agente presenta aversion al riesgo

Parte D. Encuentre el rango de valores para « para los cuales el agente es amante del riesgo (es decir, su
funcién de utilidad es convexa)

Parte E. Encuentre el rango de valores para « para los cuales el agente es neutral al riesgo (es decir, su

funcion de utilidad es convexa y céncava)
Parte F ;Que relacién encuentra entre los resultados de las partes A y B con las partes C a E?
Ejercicio 42 Sea u : R, — R una funcién de utilidad sobre estados, definida sobre niveles de riqueza.

Parte A. Pruebe que si u es de la forma: u (x) = ax + (3, entonces, para toda distribucién de probabilidades
F' (continua o discreta) sobre la variable aleatoria X (definida como riqueza) se cumple que:

Ep (u(X)) = u (Br (X))
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A este tipo de funciones se les llama funciones afines y a agentes que presentan funciones lineales o

afines se los llama neutrales al riesgo. Interprete esta definicién.

Parte B. En general, se define funcién lineal a aquella que, dados z,y € Ry cumple que:
u(Az+(1—=Ay)) =Au(x)+ (1 —ANu(y) paratodo A€ [0,1]

Pruebe que si u es diferenciable dos veces, si u es lineal, obtenemos que u” = 0. (Sugerencia: pruebe
que este tipo de funciones de utilidad son de agentes tanto amantes del riesgo como aversos al riesgo)

Parte C. Asumiendo que u(z) > 0 para todo z € R, pruebe que si u no es afin, entonces existe una
distribucién F, tal que
Ep, (u(X)) # u(Ep, (X))

(Sugerencia: Estudie el significado de que una funcién no sea afin, e intente encontrar una distribucién
F, discreta )

Ejercicio 43. Hay un agente con funcién de utilidad sobre la riqueza v : R, — R con u diferenciable dos
veces (es decir, existen v/ y u” ) tal que v’/ > 0y u” < 0. Suponga ademas, que el individuo cuenta con
una riqueza fija w. Suponga ahora que se le presenta la siguiente loteria:

gana 100e% de w con probabilidad % +
pierde 100e% de w con probabilidad % -7

Parte A. Sea W la riqueza esperada de enfrentar esta loteria. Pruebe que E (W) = w (1 + 27e). Usando
esto, pruebe que E (W) — w cuando ¢ — 0.También vea que si m = 0 entonces E (W) = w. Interprete.

Definimos premio en probabilidad relativo por riesgo a la probabilidad 7 (¢) que depende de la
cantidad que puede ganar (o perder) a aquella probabilidad que hace que el individuo sea indiferente entre
tomar la loteria y quedarse con la riqueza w. Esto es, 7 (¢) se define implicitamente a partir de la siguiente

ecuacion:

w(w) = Em(z)} wlw (14 + [gw@]u[wae)}

Parte B. Si el agente es averso al riesgo, argumente (con palabras) porque deberia suceder que 7 (g) > 0
para todo € > 0

Parte C. Pruebe que 7 (0) = 0. Para esto, diferencie ambos lados de la igualdad respecto de € y pruebe que:

m(e){u (w(l+e))+u (wl—e)}wtna (e) {u(w(l+e)) —u(w(l— 6))}+% [w' (w1 +e) —u (w(l—e)w=0
Y luego valie esta igualdad en € =0

Parte D. Pruebe que 7’ (0) = fauu/,(%)m = ao (w) con o (w) el coeficiente de aversién absoluta al riesgo
de Arrow-Pratt y @« € R (Sugerencia: diferencie la igualdad encontrada en el punto anterior y valdela
luego en € = 0. No se asusten: son muchos terminos, pero cuando ¢ = 0 luego son facilmente simplificables).
Esto nos dice que el coeficiente de aversién relativa al riesgo mide la tasa a la cual el premio en probabilidad

relativo por riesgo crece cuando estamos en situaciones con poco riesgo (medidos por ¢ )

Ejercicio 44 (Mas Collel). Pruebe las siguientes afirmaciones:
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Parte A. Una funcién de utilidad sobre estados u : Ri — R creciente, tiene coeficiente de aversion relativa

al riesgo o = le,/éf))x constante para todo € Ry siy solosi u(z)=pz""7+~v con 3>0y~y€ER

Parte B. Una funcién de utilidad sobre estados u : R; — R creciente, tiene coeficiente de aversion relativa
al riesgo constante e igual a 1 para todo x € Ry siy solosi u(x)=FIn(z)+y con >0y ~v€R
Parte C. lim,_,; % =In(z) para todo z > 0.

Sugerencias: Para las Partes A y B utilice lo que conoce de resolucién de ecuaciones diferenciales, de
matematica 3. Para la Parte C utilice la regla de L‘Hopital, que dice que lim,_., % = limy_.q ;l,(%.
Ejercicio 45 (Mas Collel) Sea u : R; — R una funcién de utilidad de estados sobre riqueza, con la forma:

u(x) = fr? +yx

Parte A. Pruebe que la utilidad esperada para cualquier distribucién F' depende unicamente del valor

esperado de la riqueza bajo F,Er (X) y de su varianza, Vg (X).

Parte B ;Para que valores de x y valores de los parametros 8 y v es la funcién de utilidad creciente y

coéncava?

Ejercicio 47. Suponga que el espacio de estados es X = Ri. Es decir, los estados son las posibles canastas
de consumo . Suponga que la funcién de utilidad sobre estados es una Cobb-Douglas: u (21, x2) = x‘fx%_‘x

Suponga que los precios de los bienes son p1,ps > 0y que el ingreso es w > 0.

Parte A. Pruebe que la solucién de problema del consumidor, sin incertidumbre, consiste en elegir consumos
6ptimos (z7, z5) tales que
x] :ap—l y xQ:(lfa)p—2

Parte B. Suponga que ahora, el agente no puede comprar directamente los bienes, sino que puede comprar
activos A1 y Ay tales que si compro z; unidades del activo Ay, obtengo z1 X; unidades del bien 1, con X3
una variable aletoria que toma valores positivos. De la misma manera, si compro zo unidades del activo A,
obtengo z3 X2 unidades del bien 2, con X, otra variable aleatoria que toma también valores positivos. El
vector aleatorio (X1, X2) tiene densidad f (z1,z2) con f(x1,22) > 0 siempre que 1 > 0y x2 > 0. Es
decir:

(X1, X2) ~ f(21,22)

Cada unidad del activo A; cuesta ¢; pesos y cada unidad del activo Ay cuesta go pesos. explique con

palabras, que el problema a resolver es el de elegir z1, 25 para maximizar
+oo +oo
/ / u (2121, 2222) f (x122) dr1das
0 0
sujetoa : @121+ @eze S w

Parte C. Suponiendo que existe la esperanza de la variable aleatoria H = Xszl_‘X = u (X1, X2), pruebe

que, para el caso de u (x1,z2) = 2§z~ se cumple que:

+oo +oo
/0 /0 u (2121, 2222) [ (z122) drrdre = u (21, 22) B [u (X1, X2)] = u (21, 22) E (H)

Parte D. Utilizando la parte anterior, y sin resolver explicitamente el problema, pruebe que la solucién al
problema planteado en la Parte B consiste en elegir cantidades de activos (z27,25) tales que:
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w N w
H=a—y 2z5=(1—-a)—
i ( )q2

Parte E. Resuelva el mismo problema cuando u(x1,22) = z1 + x2 , X1 y X2 son variables aleatorias

independientes con

Xy ~ U[0,1]

Interprete.

Ejercicio 87 Deberes (basado en Mas-Collel) Suponga que una agencia de seguridad nacional esta
pensando en establecer un criterio bajo el cual un drea que es suceptible de enfrentar huracanes sea evacuada
o no. La probabilidad de que haya un huracdn es de 1%. Hay 4 posibles resultados:

1. No es necesario evacuar la ciudad (no hay huracdn) y no se realiza la evacuacién (que llamaremos

escenario A)

2. No es necesario evacuar (no hay huracdn) y se realiza una evacuaciéon innecesaria (que llamaremos

escenario B)
3. Es neceasario evacuar (hay huracdn) y se hace la evacuacién (que llamaremos escenario C')
4. Es necesario evacuar, pero no se realiza una evacuacién (que llamaremos escenario D)

Suponga que la agencia estd indiferente entre el escenario B y una loteria que con probabilidad 0.9 da
el escenario A y con probabilidad 0.1 da el escenario D. También suponga que la agencia esta indiferente
entre el escenario C' y una loterfa que con probabilidad 0.95 da el escenario A y con probabilidad 0.05 da
el escenario D. Suponga también que las preferencias son tales que el escenario A es estrictamente preferido
al escenario D ( y ademas, son el mejor y el peor) y que las preferencias sobre loterias sobre los estados son

tales que se cumplen los supuestos del teorema de Von Neumman y Morgenstern.

Parte A. Construya una funcién de utilidad sobre estados para calcular la utilidad esperada de la agencia
(Sugerencia: Siempre se puede suponer que la utilidad de la peor loteria degenerada es 0 y que la utilidad

de la mejor loteria degenerada es 1)

Parte B. Considere los siguientes criterios:

e Criterio 1: Se evacia el 90% de los casos en los que un huracén pasa por la ciudad; si no hay huracdn,

se evacia en el 10% de los casos;

e Criterio 2: Se evacta el 95% de los casos en los que un huracén pasa por la ciudad; si no hay huracéan,

se evacua en el 15% de los casos.

Derive las distribuciones de probabilidad de los 4 escenarios bajo ambos criterios, y en base a la Parte A

encuentre cual de los dos criterios deberfa ser escogido por la agencia.

Ejercicio 48 (Basado en Mas Collel) El siguiente ejercicio es un argumento por el cual a veces se pide
que la funcién de utilidad sobre riqueza u : Ry — R sea acotada. Decimos que una funcion v : Ry — R es
acotada si existe K € Ry tal que |u(z)| < K para todo z € Ry
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Parte A. Suponga que un agente tiene utilidad sobre la riqueza u (w) tal que u es una funcién no acotada.
Pruebe que, para todo n € N existe un nivel de riqueza z,, tal que u (z,) > 2"

Parte B. A este agente se le presenta la siguiente apuesta: “Se tira una moneda hasta que sale cara. Si sale
cara en la n—ésima tirada, se paga z,, al agente” con la secuencia x,, la definida en el punto anterior. Pruebe
que la utilidad esperada de esta loterfa es infinito (Sugerencia: utilice el primer criterio de comparacién
para series infinitas que dice si tengo dos sucesiones tales que a,, > b, > 0 para todon € Ny > {°b, = +o0
entonces Y 0" a, > >0 by =400 = a, =400 )

Parte C. Suponga que usted tiene una casa de apuestas, y que hay dos tipos de personas a las cuales
puede enfrentarse: aquellas con funcién de utilidad w(x) = log(x) y aquellas con funcion de utilidad
v(z) =/ —5. En base a lo visto en las partes anteriores, disenie una loteria en base a tiradas repetidas
de una moneda, tal que cualquiera de los dos individuos estaria dispuestos a pagar cualquier suma de dinero

por esta loteria. ;Encuentra algo extrano en esta aseveracion, si quisiera testearse a nivel empirico?

Ejercicio 49. Suponga que tiene un individuo con funcién de utilidad sobre riqueza u (z) = 22 . Este
individuo tiene riqueza w = 1. Al individuo se le presentan dos activos: un activo A; que por unidad
comprada, paga un rendimiento de R; = (1 4+ 71) con 71 la "tasa de interes", aleatorio, y un activo As
que paga un rendimiento Ry aleatorio por unidad comprada. Ambos activos cuestan $1 la unidad. Asuma,
asimismo, que el individuo puede comprar cualquier cantidad de estos activos (es decir, puede llegar a
comprar mas que lo que puede con la riqueza w) Suponga que los rendimientos aleatorios de ambos activos,

(R1, R2) son un vector aleatorio con la siguiente funcién de densidad:

i si rp+r2<2,712>0,1722>0
0 en caso contrario

f(ri,re) = {

Parte A. Bosqueje el soporte de la densidad f (es decir, el conjunto en Ri donde f >0)

Parte B. Encuentre las densidades marginales para R; y Ro

Parte C. Calcule E (R;), E(R3) y Cov (Ry, R2)

Parte D. Argumente (con palabras) que el problema que debe resolver el agente es el de elegir (21, 22) € Ri

para maximizar

“+o0 “+o0
/_ /_ wlw—2z1(1—r1) — 22 (1 —r2)] f (r1,7r2) dridre

Parte E Usando la Parte B encuentre las demandas 6ptimas de estos activos si existiera solamente el activo
1 y el activo 2: es decir, si llamamos ¢ (r1) a la marginal de Ry, encuentre la solucién al problema de elegir
z1 para maximizar
+00
/ u[wle (1*T1)]g1 (Tl)d?"l
—0
y andlogamente para el activo As.
Parte F. Sin resolver el problema planteado en la Parte D, investigue si las soluciones separadas para cada
activo encontradas en la Parte E son también solucién del problema de la Parte D. (Sugerencia: encuentre
las condiciones de primer 6rden del problema de la Parte D sin resolverlas, e investigue si las soluciones
particulares que encontré en la Parte E la satisfacen)
Parte G. Explique, en base a los datos que a encontrado a lo largo del ejercicio, porque pasa lo que vié en
la parte F' (Sugerencia: investigue los momentos encontrados para la distribucién f )

86



Ejercicio 50. Un fabricante de lamparas de hal6geno es monopolista en el mercado local. La intendencia
municipal le solicita un presupuesto para hacer el alumrado piblico de un parque: especificamente, una
lampara. El fabricante de lampara debe elegir la calidad de la lampara que vendera. La calidad viene dada
por la duracién esperada de la lampara: especificamente, se supone que si llamamos 7" a la duracion de la
lampara, tenemos que T' ~ exp (1), o mds especificamente, T' tiene densidad

f(t):{ 1+ exp (3t) SiA>0

0 en caso contrario

Puede probarse que E (T') = A. Justamente es el pardmetro A el indicador de “calidad” de la lampara.
El tiempo se mide en dias. Por otra parte, el fabricante tiene un costo para la tecnologia de produccién
de calidad A : especificamente, c¢(\) = p)\ﬁ con p,B > 0. El contrato que propone la intendencia es
el siguiente: si las lamparas duran ¢ dias, pagard P (t) = at, con a > 0 El fabricante debe elegir A para

maximizar beneficios.
Parte A. Dada una calidad X, demuestre que la utilidad esperada del fabricante es u () = aX — p\®
Parte B. Encuentre la calidad 6ptima A* dependiendo de los pardmetros a y p

Parte C. Suponga que 8 = 1 y que en el contrato, se exige una duracién minima de D dias: si la lampara
se rompe antes de los D dias, la intendencia no paga nada por ella. Plantee y resuelva el problema: ;como
cambia la solucién del problema anterior?

Parte D ; Cual es el tiempo esperado de duracién de las lamparas en ambos problemas?

Ejercicio 51. Tenemos un conductor, que puede chocar o no chocar. Esto depende de la cantidad de esfuerzo
que realiza al conducir, teniendo en cuenta las senales de trénsito, respetando los limites de velocidad, etc.
El nivel de esfuerzo que realiza afecta la probabilidad de chocar: explicitamente, suponemos que el nivel de
esfuerzo es una variable e € [0,1], tenemos que Pr[chocar | ¢] =1 — e. Obviamente, tendremos entonces
que Pr[no chocar | e] = e, por lo que el esfuerzo se interpretara como la probabilidad de no tener accidentes

de transito. La utilidad del individuo en los siguientes estados de la naturaleza es la siguiente:

e Utilidad de esforzarse e si no choca: —e?

e Utilidad de esforzarse e si choca: —(a+s) —é?

Cona € (0,1) y s € (0,1) las desutilidades por la destruccién del auto (a) y por los gastos médicos luego
del accidente (s). El conductor elige el nivel de esfuerzo 6ptimo e € [0, 1]

Parte A. Plante el problema de eleccién del nivel de esfuerzo éptimo del conductor, suponiendo que puede
aplicarsele el teorema de la utilidad esperada.

Parte B. Encuentre el nivel de esfuerzo éptimo e* dependiendo de los parametros (a,s). Encuentra la
utilidad esperada en el nivel de esfuerzo 6ptimo e*. ;Como cambia la solucién e* ante cambios en los

pardmetros? Explique la intuicién detras de los resultados

Parte C. Suponga que ahora se le obliga al conductor usar cinturén de seguridad. Esto hace que, en caso de
accidente, el costo por gastos médicos sea s’ < s. Sin embargo, por tener que utilizar cinturén de seguridad,
tiene desutilidad ¢ € (0,1). Es decir:
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e Utilidad de esforzarse e si no choca: —e? —¢

e Utilidad de esforzarse e si choca: —(a+s)—e?—c

Plantee y resuelva para e. Encuentre la utilidad esperada para el valor de € 6ptimo

Parte D. Suponga ahora que se le da a elegir libremente al conductor entre usar cinturén de seguridad
y no usarlo. ;Cual es la eleccién 6ptima del conductor? (Sugerencia: Compare las utilidades esperadas

maximas de los puntos (b) y (c)

Parte E. En no mas de 5 lineas, y sin usar ninguna formula matemadtica, discuta la siguiente afirmacién:

“La obligatoriedad del cinturén de seguridad ha contribuido a la disminucién de los accidentes de trénsito”

Ejercicio 88 Supongamos que hay exactamente dos activos, A y B y dos estados de la naturaleza, 1 y 2.
Los pagos de los activos en los dos estados son:

Activo A Activo B
Estado 1 5 20
Estado 2 6 0

Sean x4 y xp las cantidades de activos A y B demandadas por el comprador. Si llega a importar, asuma
T4,z > 0. Que haya dos activos quiere decir que el individuo debe invertir todo su capital en esos activos
(no puede quedérselo en dinero).

Decimos que la Relacién Fundamental de Valuacién (RFV) se cumple si para ambos activos, en el 6ptimo,

E W (w)(1+ra)) = E(u (w) (1+73))

donde r4 y rp son los retornos (en porcentaje) de los activos. Suponga que la utilidad del individuo es

u (w) = y/w, que la riqueza inicial es 390, que la probabilidad del estado 1 es % y que pa = pp = 2.

Parte A.Calcule el portafolio 6ptimo del individuo, y verifique que se cumple la RFV.

Parte B. Calcule el portafolio 6ptimo si los retornos vienen dados por

Activo A Activo B
Estado 1 6 18
Estado 2 6 0

jse cumple la RFV?

Parte C. Calcule el portafolio 6ptimo con estos retornos, y verifique si se cumple la REV

Activo A Activo B
Estado 1 6 17
Estado 2 6 0

Ejercicio 89 Hay un trabajador de una linea de ensamblaje, cuya probabilidad de tener un accidente de-
pende del esfuerzo que realice en cuidarse (respetar manuales de procedimiento, usar vestimenta y calzado
adecuado, nivel de atencioén, etc). Supondremos que el nivel de esfuerzo es una variable e € [0,1] y ob-

viamente la probabilidad de tener un accidente depende negativamente de él, en particular asumiremos
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Pr (accidente | e) =1 — e, de manera que el esfuerzo se interpretard como la probabilidad de no tener acci-
dentes. El problema es que el esfuerzo le genera desutilidad al trabajador, cuya funcién de utilidad respecto
al esfuerzo, el dinero w, y el costo ¢ de usar casco (que no reduce la probabilidad de accidente), viene dada

por u (w,e,c) = w — >

— ¢. En caso que ocurra un accidente asumiremos que el trabajador quedard im-
posibilitado de trabajar y més alla de que tenga un subsidio por enfermedad el mismo le implica cobrar $p

menos de lo que serfa su salario normal (llame s al salario, y p a la pérdida). Asuma que p € (0,2).

Parte A. Plantee el problema de eleccién del nivel de esfuerzo éptimo por parte del trabajador, suponiendo
que es aplicable el teorema de utilidad esperada.
Parte B. Encuentre el nivel de esfuerzo éptimo e*, dependiendo del pardmetro p. Encuentre la utilidad
esperada en dicho nivel 6ptimo de esfuerzo. ;Cémo cambia la eleccién de e* ante cambios en el pardmetro
p?
Parte C. Suponga que ahora se le obliga al trabajador a usar casco de seguridad. Esto hace que en caso de
accidente, y en virtud que se han tomado mayores precauciones, se aumente lo que se le paga al trabajador
como subsidio, de manera que la cantidad de salario perdida es ahora p’ con p’ < p. Sin embargo la utilizacién
del casco, le genera una desutilidad de ¢, como dijimos anteriormente. Plantee el problema y resuelva en
este caso el esfuerzo 6ptimo para el trabajador. Encuentre la utilidad esperada en el nivel éptimo.
Parte D. Suponga que ahora se le da la libertad al trabajador de utilizar o no el casco de seguridad. jcudl
es la eleccion 6ptima del trabajador?
Parte E. Discuta brevemente la siguiente afirmacién (dé sélo la intuicién sin utilizacién de férmulas
matematicas):

“La obligatoriedad del uso del casco de seguridad en las industrias, ha contribuido a reducir el nimero
de accidentes laborales”

Ejercicio 90 An investor chooses a portfolio comprising one risky asset with expected rate of return pu, =
0.15, and standard deviation of return oz = 0.40, and lending or borrowing at a risk-free rate, ro = 7%. Let
1t p denote the expected rate of return on the investor’s portfolio, and let o p denote the standard deviation
of the rate of return on the portfolio. Let ¢ denote the proportion of the portfolio invested in the risky asset.

Part A. In a diagram, sketch the trade-off of feasible pairs of (up,op) (i.e. pairs that the investor could
choose). In the diagram, identify the points for which ¢ = 0 (all capital invested at the risk-free rate) and
g =1 (all capital invested in the risky asset). Show that the slope of the trade-off equals 0.20.

Part B. Assume that the investor acts to maximise the objective function: G (up,op) = pp — 0.50%.
Sketch the indifference curves for the investor in (up,op) space. Show that the slope of each indifference
curve for this objective function equals op (i.e. dup/dop = op). Generalise your answer to show that if
G (up,op) = up — aos, then the slope of each indifference curve equals 2aop. (Note: is a parameter that
expresses the investor’s risk preferences.)

Part C. In a diagram, depict the pair (up,op) corresponding to an optimal portfolio. Using the information
given above, show that for this investor, one-half of the portfolio is invested in the risky asset and one-half
in the risk-free asset, i.e. ¢ = 1/2 . [Hint: op = goz, and equate the slope of the indifference curve
at the optimum with the slope of the trade-off of feasible portfolios.] Generalise your result to show that

q¢=(uz —10)/200°Z.

Part C. Suppose that the interest rate increases to 11% (u, and oz, remaining unchanged). Sketch the
effect on the optimal portfolio in a diagram and calculate the new value of ¢, given the numerical information
provided.
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53. La utilidad es u (m) = In (m), la riqueza inicial es m = 30. En una apuesta, si sale hh = +20, ht = —24,
tt = +4, th = —6.

53.A. Cual es el valor esperado? EV = W =—3
53.B. Cual es la utilidad esperada? Eu = ln(50)+1n(6)'zln(34)+ln(24) =3.102

53.C. Cuanto esta dispuesto a pagar para salirse de la apuesta? « (30 —x) = 3.102 < In (30 — z) = 3.102,

Solution is: 7.7576

3

There’s an asset that costs p = 1 and that has returns of 4 and 16 in states 1 and 2 respectively; the states
have probability 1/2 each. The consumer has an initial wealth of w and a utility function for consumptions

et el
U (co,c1) = 10 S +0E (fﬂy)

where F is the expectation operator. Find how much will the individual save.

1—~ 1—~
<N -l
oFE

in periods 0 and 1 given by

The individual must choose s to maximize

st.cg = w—s
c11 = 4s
Cl2 = 16s

Substituting, we get

1— 1— 1— - - B
U:M é (43) K + (163) v _ ('UJ*S) Y +é 41 ~y N 161 v 8177

and the first order condition is
_ 0 _ 0
U=—(w—3s)"+ 3 A7 416" s =0 (w—15) " = 2 (47 +16'77] 577
so that elevating both sides to the power of —1/7v we get

w—s:[g(41_"’+161_"’)}ws®s= <

1+ [2 (417 +16177)]

=1
B

Suppose asset returns are given by
Asset A Asset B

State 1 5 20
State 2 6 0

and that the probability of state 1 is 1/3 while that of state 2 is 2/3. Suppose that the von Neumann

Morgenstern utility function (or the Bernoulli utility function) is u(co,c1) = /co + 0E\/c1 (the price of
the consumption good is 1 in both periods) that the initial wealth level of the individual is w, and that

pa = pp = 2. Calculate the optimal portfolio for this individual.

He must choose ¢y, x4, x5 to maximize

Ve +0E (v/er)

w = co+2xa+22p
c11 = HDxa+20xp
ci2 = 6x4
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Getting rid of g using the budget constraint, we see that the individual must choose ¢y and x4 to maximize

1 —cg—2 2
\/a-i-(s (g\/5l‘,4 -I-QOw + g\/6$A>

The first order conditions with respect to ¢y and x4 imply
100
c11 = 52700 and 8ci11 = 75z 4

respectively. Using ¢13 = bz + 20% (which contains the budget constraint and ¢17 = 5x4 + 20zp)

we get
2

7882 + 27

w
co=9—=——, and x4 =32w
"7 7260 + 9 4

Then, using the budget constraint we get xp = 7w#127.

If, for example w = 795 and § = %\/5 we get ¢g = 600 and x4 = 80 and x5 = 35/2.

Ejercicio 89.A. El trabajador debe elegir e € [0,1] y « € {0,1} para maximizar
e(w—e*—zc)+(1—e)(w—p—e®—ac).

La variable x dice si usé casco o no.
89.B. Obviamente va a elegir z = 0. Por otro lado, como la funcién objetivo es céncava, las condiciones de
primer orden son necesarias y suficientes, y dan 2¢* = p < e¢* = p/2. La utilidad esperada es

1
e(w—e*)+(1—e)(w—p—e? :sz—p—i—w.
89.C. Cuando cae p, cae el esfuerzo 6ptimo de £ a %, La utilidad esperada es ip’z —p+w-—c

89.D. El trabajador debe elegir entre ipz —-pt+wy %pa —p' 4+ w — ¢, y usard casco si y sélo si
wr—p —c>p—poc<p (v -1)-p(ip-1).

89.E. La afirmacién es falsa: cuando se fuerza el uso del casco, baja el nivel de prevencion.

Ejercicio 73.A. Le coeficiente de aversién al riesgo es

73.B. El problema es el de elegir ¢ para maximizar

1 1 1 —ar
U= _Zefa(rfc) _ Zefzu’ _ §efa(7‘+c) — _eT (eac +14+ 267(1(2) )

Como (68 4 1 4 ge—ac
rrit2e™) _ o (1-2e7209) =05 1 = 27200
dc e—ac

obtenemos 2—1a In2 = c¢*.

Ejercicio 91 Sea G el conjunto de apuestas (distribuciones de probabilidad) sobre un ndimero finito de
resultados {a1,...,an} C R4, con a; > a;—1. Para cada apuesta p = (p1,...,pn) € G, sea h(p) el resultado
méximo que se puede alcanzar en p : h(p) = max{ay : pr > 0} . Definimos ahora una funcién de utilidad
V (p) , que valora los incrementos sobre h (p) : V (p) = > pi(a; — h(p)) .
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Parte A. Calcule el valor esperado y la utilidad esperada de las siguientes apuestas sobre {0,1,2,3,4,5} :
p=(5733%000)y¢=(0,300757)

Parte B. Muestre que para todo a; y a;, las loterfas que son degeneradas en a; y a; arrojan la misma
utilidad.

Parte C. Muestre que la relaciéon de preferencias no es mondétona, en el sentido que no se cumple que
(1-a,0,..,0,0) = (1 =5,0,...,0,8) & a > (. Es decir, cuando aumenta la probabilidad de un resultado
bueno, a,,, y baja la de uno malo (a1), “deberfa” aumentar la utilidad (si son monétonas).
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Soluciones Utilidad Esperada

Ejercicio 44 (por Manuel Macera). Si las preferencias son transitivas y cumplen independencia tenemos
p=qg= X+ (1 =Nr=X+(1-XNr

y si tuviéramos Ag+ (1 —A)r = Ap+ (1 — A\)r obtendriamos (usando la flecha que “vuelve” en Independencia)
q = p, por lo que concluimos que Ap 4+ (1 — A)r = Ag + (1 — A)r. En forma similar,

p=r=1=XNp+ip=(1—-XNr+p

por lo que juntando ambos resultados tenemos p > (1 — A\)r + Ap = Mg+ (1 — A)r y por transitividad
p = Ag+ (1 — A)r. que es lo que querfamos demostrar.

Ejercicio 45. Se viola Independencia. Como r = %p + f‘—(%éo se cumple que

89 11 89 ( 11 979 8911 ) _

11
P=a4="= 1507 700%™ 1007 100%° = \ 1000’ 10000° 10000

— AL 89 A1 89 . i iccid
Pero como s >~ 7, tenemos que t = 7005 T 100" ~ 700" T 106" =7 lo que constituye una contradiccién.
El siguiente dibujo ilustra la construccién de ¢ :

610

p= (091’0) = 51 r

El préximo ilustra por qué no pueden ser rectas paralelas las curvas de indiferencia
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p=(010)=9, r

(por Manuel Macera). Para empezar dibujemos las loterfas involucradas en el simplex de R3. Sabemos
que la loteria r es indiferente a alguna combinacién de la loterfa degenerada en 0 (Jp) y la loteria degenerada

en 1 (01). En particular:
11 51+ 89 5
P~ — —
100 ' " 100"
y yace en el lado del tridngulo que une ambas loterfas degeneradas. De hecho, si la loterfa z se encuentra

sobre el lado 0,0,, entonces se cumple z ~ A, + (1 — X)d, y ademds:

5.2 0y2z
Dz Syz
e =l-A Yy = =2A

Pensemos ahora cémo son las curvas de indiferencias (vamos a asumir razonablemente que d19 > d1 > d¢).
Sabemos que existe 8 € [0,1] tal que p ~ 3§y + (1 — 5)d10, lo cual quiere decir que la curva de indiferencia
de p pasa por un punto sobre la base del tridngulo que vamos a llamar A. Sabemos ademads que es una recta
y que si el individuo revelé p > ¢, tiene que pasar a la derecha de ¢, pues d19 = p. No sabemos exactamente
donde queda A pero podemos restringir su valor. Si p > ¢ entonces:

10 89 1 10 1
u(l) > 1—00u(10) + 1—00u(1) + 1—00u(0) < u(l) > ﬁu(lo) + ﬁu(O) &=

10 1 10 1
D - ﬁ(sl() + ﬁ60 &S A - H(Sm + H(SO

La iltima linea implica que el punto A también estd a la derecha de la loteria %(510 + ﬁéo y por lo tanto

J——; 5A > %. Del mismo modo, s > r implica que si llamamos B a la loteria que es indiferente a r y que

0010 JR—

combina las loterfas degeneradas dg y 919 , este punto estd a la izquierda de s y por lo tanto %)TA < %. Si
0010

las curvas de indiferencia son paralelas, por semejanza de tridngulos se debe cumplir

60?" o 503
0001 0pA
Utilizando 2o — AL~ 9ed ~ 10 9B 10 yemo5 que esto es un absurdo pues
d0d1 1007 54610 17 80610 100

11 dor 6B _10/100 _10/100 11 JENGES N o)
100 6001  0pA oA 10/11 100 100 100
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Ejercicio 47. Probaremos primero que si u(-) satisface (1), v(z) = au(z) + b también. Sean dos loterias
cualquiera p, ¢ tales que p = ¢, entonces:

u(p) > u(q) <= au(p) = au(q) <= au(p) +b > au(q) +b < v(p) = v(q)

y por lo tanto v(-) también satisface (1).

Para probar la otra implicancia neguemos v(x) = au(z) + b. Basta con imaginarse una loterfa para la
cual no se cumpla la igualdad aunque para todas las demds se cumpla. Sin pérdida de generalidad, sea P el
conjunto de las loterias posibles y p, ¢, y r tres loterias tales que p »= ¢ = r y ademds v(x) = au(z) + b para
todo x € P—{p}. Esto quiere decir que v(p) # au(p)+b. Sabemos que existe una loterfa que es combinacién
de p y q tal que:

r~ap+(1—a)g
Como u(-) representa a las preferencias se debe cumplir
u(r) = u(ap + (1 — a)q)
u(r) = au(p) + (1 — @)u(q)
au(r) + b = a(au(p) +b) + (1 — a)(au(q) +b)

Si v(-) satisface (1), debe satisfacer también el tltimo resultado, lo cual evidentemente no ocurre pues
aunque v(r) = au(r) + by v(q) = au(q) + b, sucede que v(p) # au(p) + b, con lo cual probamos la doble

implicancia.
Ejercicio 48. Supongamos que = satisface (1) para alguna funcién de utilidad u.

Completas: para todo p y ¢,
up2uq = p=q
0
ugZup & qzp

o ambas, por lo cual las preferencias son completas.

Transitivas: supongamos que p = q y ¢ > 7. Por la ecuacién (1) de las notas tenemos que

pPrq & up>uq

=Sup>ur<sper
qr-r <& ugq>ur

por lo que las preferencias son transitivas.
Continuas: supongamos que hay una secuencia (sucesion) {ay, },-; tal que

anp+ (1 —ayn)g=t,Vn (16)

y a, — a. Para demostrar que {a : ap + (1 — aq) = t} es cerrado, necesitamos demostrar que ap+(1 — aq) =
t (es decir, tomamos una secuencia que converge, y que para todo n estd dentro del conjunto y debemos

demostrar que el limite estd dentro del conjunto). Por (16) tenemos que

Y

wlanp + (1 — ang)] ut & ayup + (1 — o) ug > ut =

V

oup + (1 — a) ug utsulap+ (1 —aq)] > ut <

ap+(1—a)g = t=ac{a:ap+(l—aq) =t}.
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Haciendo una demostracién andloga para mostrar que {« : ¢ = ap + (1 — aq)} es cerrado, se muestra que las

preferencias son continuas.

Independencia: supongamos que p,q y 7 son loterfas y que « € (0,1), entonces
P = gESUp > Uq S aup > QUq S Uuap > uag <
vaptu(l—a)r > wagtu(l—a)reulap+(1—a)r]>ufjag+ (1-a)r] &
ap+(1—a)r ag+(1—a)r

1Y

por lo que se cumple independencia.

Ejercicio 49.A. La loterfa p tiene media 1 y varianza 0, por lo que U (p) = 1. Por otro lado, E, (z) y
E, (xQ) = %0 + %16 =8 y por tanto U (q) =2 — % =1 y la persona es indiferente.
49.B. Una forma de hacer esto es directamente probar qué pasa si mezclamos las dos loterias p y ¢ con la
loteria 69 = (1,0,0). Seguin el axioma de independencia, la persona deberia ser indiferente entre estas dos
mezclas. Sin embargo no lo es.

Tenemos que Ey,, 15, (2?) =40+41=1, Vipiis, (@) = i-1y Eigy1s, (z%) = E(3 0.2) (z%) =4 por

lo que
11 IR 11
p4 = ——-_4_ _ —q4+ = =1 —= ==,
U<2p+25°) 2 1 16YU<2‘”25°> 1 1

Si no probaban con eso, podian probar de graficar la curva de indiferencia que pasaba entre p y ¢. Vemos

11 l-a 1-
r=a(0,1,0)+ (1 - a) (5,0,§> - (T“aT“>

y por lo tanto E, (z) =2 —ay E, (2*) =8 — 7a por lo que

que

8—Ta—(2—a)? 1
U(r)y=2—a- a-(2-a) =-a(a—1)+1.
4 4
Verificamos que cuando a = 0 y a = 1 obtenemos la misma utilidad (las utilidades de g y p respectivamente).

Sin embargo, para cualquier a € (0, 1) la utilidad es mas pequena que 1.

Ejercicio 50. Sean V (p) = M y Wi(p) = Iipll(])ﬁ_ Estas dos funciones de utilidad generan las mismas
preferencias (porque las dos son transformaciones crecientes de p = ¢ < F(p) > FE(q)) que satisfacen
independencia.

Una forma cortita de ver que las preferencias generadas por v y w satisfacen independencia es ver que
las preferencias definidas por p = ¢ < E (p) > E (q) satisfacen independencia, y como son las mismas que

las generadas por v y w, estaremos listos. Tenemos

p = g E(QP>E(Q@QeEMN)>2EN) S EMN+E((1-Nr)>EM)+E(1-A)r) <
EQp+(1=XNr) > EM+1-Nr)edp+1-Nr=+(1-N)r

Una forma un poco més tediosa y directa, es chequear directamente que las preferencias generadas por v
y w satisfacen independencia. Tomemos por ejemplo las preferencias generadas por W :

p = g [E@P>E@Q@PeE@P>E@qe
NEXp)+A1-NE@PEr) > NE*(+ X1-NE(@QE(r) <
DE@+(1-NE@]? > DE@Q+A-NEMP e
EQp+1-N1] > [EQq+ Q=N edp+I-Nr=Ag+ 1=
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como querfamos demostrar. Vemos que tanto V' como W generan preferencias que satisfacen independencia,

111
V<§’§’§>

V (0,0,1)

y también que

111
333

)W(O,LO)1

V(0,1,0)W< 5

W (0,0,1) = 1

pero V' (1,0,0) =0y W (1,0,0) = 1/5. Por lo tanto, no podriamos saber si U =V o U = W, por lo que no
podemos saber cuanto es U (1,0,0) .
Si supiéramos que U es lineal, tendriamos

111 2 /1 1 1 2 1 1 1
Ul=-,-,-)=U|=(=,0,= -(0,1,0)| ==U(=,0,= =U(0,1,0)=U (0,1,0
(373’3) [3(2772)+3(7’):| 3 (2’72>+3 (0,1,0) (0,1,0)
por lo que u (3,0,4) = (0,1,0) = 1. Luego,
1 1 1 1 1 1 1 1 1

por lo que «(1,0,0) = 0.

Ejercicio 52. Hay dos formas de hacer este ejercicio. Una es citar la Aplicacién B hecha en clase. El
activo riesgoso cuesta $1 por unidad (el individuo “compra” tantas unidades ¢ como desee) y paga 3 con
probabilidad % y 0 con probabilidad % En ese caso, el individuo compré una apuesta en la que gana 2t con
probabilidad % y pierde ¢ con probabilidad % Lo que nos decia esa aplicacién era que como la derivada de
la utilidad esperada en t = 0 era positiva, existia un ¢ > 0, suficientemente pequenio, tal que el individuo
estaba mejor comprando t unidades que 0.

La otra es hacer el problema directamente. La utilidad esperada es 2u (r + 2t) + $u (r — t) por lo que la
derivada evaluada en t =0 es 2u (r+2t) x2+ fu(r —t) (—1)|t:0 =u(r)—tu(r) > 0.
Ejercicio 53. El valor esperado de comprar z unidades es 1+ %. El individuo no comprard nada del activo,
pues la utilidad de comprar z unidades es

1 1 (3242 1 1 /3241 z
Zu(l = - =2 (1-— = ")=1-Z
pul Z)+2“’< 2 ) 2 z)+2< 2 > 8

que se maximiza para z = 0. Lo que es “raro” es que en clase vimos que para cualquier funcién de utilidad
diferenciable, si un activo tiene retornos esperados positivos, la persona comprard siempre una porcién, no

importa cudn pequena.
Ejercicio 54.A. La utilidad esperada es

U(z)=(1-pluly—tz)+puly—ty—my—=z)) =1 —-plu(y(l —t)+tz) + pu(y(l —t) —mz).

54.B. Para que sea 6ptimo subdeclarar algo, debe ser que cuando z = 0, U’ (0) > 0 (si esta considerando no
subdeclarar, se da cuenta que aumentando un poco su subdeclaracién mejora su utilidad). Tenemos

U'(z) = (1-p)u' (y(1—t)+t2)t—pu' (y(1—1t) —mz)m (17)
U'(0) = [(1—p)t—pm]u'(y(1—t))>O<:>t>%mzt*.

El individuo puede no subdeclarar nada, y obtener seguro (1 —¢)y. O puede subdeclarar un poco, que
es equivalente a comprar un poco de una loteria riesgosa. Como cuando ¢t > Tinm la loteria de subdeclarar

un poco tiene valor esperado mayor que (1 —t)y :

(1fp)(y(1—t)thz)er(y(lft)fmz):(17t)y+[(1—p)tfpm]z>(17t)y¢>t>%mzt*.
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54.C. Si z* > 0 se cumple la condicién de primer orden que U’ (2*) = 0 en (17) (hay que verificar que se
cumple también la de segundo orden, U” (z) < 0, que se cumple pues el individuo es averso al riesgo, que
asegura v’ < 0). Si llamamos z (p) al z 6ptimo para p, tenemos que U’ (z (p)) =0, y (17) queda

fp,z2(p) =U"(2(p)) = (A —p)u' (y(1 =) +t2)t —pu' (y (1 = t) = mz)m = 0.

La versién intuitiva de la estdtica comparativa es que si sube p bajan tanto el primer término como el segundo
(en ambos aparece —p). Para que se reestablezca la igualdad debemos aumentar v’ (y (1 — ) + ¢z) o reducir
u' (y (1 —t) —mz); ambas cosas suceden si reducimos z, pues v’ < 0.

La versién formal es que

dz _ Of/op _ Wy(l=t)+t)t+u (y(1—1t)—mz)m <0
dp = 07/0: (L= p) ' (y(L— 1) + o) B pu (g (1) —mzy 2 ~
como querfamos demostrar.
En forma similar,
dz=_ Offom _  pu”(y(1—1t) —mz)zm—pu (y(1—1t) —mz) <0

dm ~ 0f/0z  (I—pu”(y(1—t)+tz2) 2 +pu” (y (1 —t) — mz) m?

Una forma ain mejor de hacer esta estatica comparativa es la siguiente (no se obtiene tan facilmente
que z es estrictamente decreciente, pero es muy facil e intuitivo ver que es al menos débilmente decreciente).

Supongamos que para p, el z 6ptimo es z, y que para p’ < p el z 6ptimo es 2’. Lo que nos dice eso es que

(I-puly@—t)+tz)+puly(l—t)—mz) > (1—pluly(l—1t)+tz')+pu(y(l—1t)—mz2)
(I=p)uyQ—t)+tz) +pu(y(l—t)—mz) < (1—-phuly(d—1t)+t)+pu(y(l—1t)—mz).

Si restamos el segundo renglén del primero (del lado izquierdo, a algo grande le restamos algo chico, y del

lado derecho a algo chico le restamos algo grande) obtenemos
@ —p)uly(—t)+tz) —uly(l—t)—m2)] = (0" —p) [uly (1 —1) +tz') —u(y (1 —t) —m2)].

Como p’ < peso solo puede sucedersiu (y (1 —t) +t2)—u(y (1 —t) —mz2) <u(y(l—1t)+tz")—u(y (1l —1t) —mz'),
que ocurre sélo si 2/ > z. Es decir, cuando aumenta la probabilidad de p’ a p, cae la subdeclaracién de 2’ a
z< 2.

Ejercicio 55.A. La riqueza en el estado 4, si compré ¢ unidades serd w + (v; — 1) ¢, por lo que debe elegir

q para mazimizar
E(w+(v—1)q—a[w+(v—1)q]2)
La condicién de primer orden es
E(w-1)(1-2aw)
2aE (v — 1)

Ew—-1-a2(w+@wv-1)q(v—-1)=0&q¢=

55.B. La solucién es
(1 —2aw)

= 2a (0% + p?)

55.C. La derivada es
dg (1 —2aw)(o® — p?)

dp— 2a(0? + p2)?
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Supongamos que a = 1/4, w = 1/ 2 y sean los retornos de B iguales a vP = 1y v£ = 3, ambos con
probabilidad 1/2. Sea A tal que v{* = 1.1 y vf = 3.1. En ambos casos siendo v; = 1 — 1y vo = p+ 1, la
varianza de v — 1 es entonces

1
+§(u+17u)2:1.

En ambos casos, el individuo demanda

1 g 1 A 95 1
= =q == =0.24887 < -
1= 79 =3V 1 =59 <1
El “problema” con este ejercicio es que el individuo es cada vez més averso al riesgo cuando incrementa
su riqueza.
Ejercicio 58.1. E (u fx“da: = =41, vy E(u) =a0*+(1-a)1"

58.11. En el primer caso, tenemos que
1
/logxd:r: = lin%/logxdx = lin% |z logx — CL‘|i = HII(I)(—]. —zlogz+2z)=—1
0

Para el caso de la distribucién discreta, tenemos que E (u) = alog0+ (1 — «)log 1, que no existe, pues log0
no existe.
1

58.IIL E(u) = [(ax +b)de =% +b,y E(u)=(1—a)a+b
0

58.IV. Sustituyendo en la parte III, obtenemos E (u) = 1, y E (u) = a.

58.V. En el caso de la uniforme debemos demostrar que la utilidad esperada es menor que cualquier nimero
k < 0 que elijamos (es decir, la utilidad esperada es —c0). Con eso habremos demostrado que la utilidad
esperada no existe. Vemos que como —z~! < 0 para todo = > 0,

/1(—35_1) dx</1(—x_1) dr =k

como querfamos demostrar.

Ejercicio ??7. Tenemos que para r la riqueza y u la utilidad del individuo, como es averso al riesgo, prefiere
la riqueza r + 10 seguro, antes que una loterfa que le da r + 5 con probablhdad y r 4 15 con probabilidad

% (en forma similar para r + 20):

u(r+10) > 1u(r—|—5)—l—1u(r—|—15)

2 2
2 1
u(r+20) > gu(r—|—5)+§u(r+30)

Multiplicando la primera desigualdad por %, la segunda por % y sumando, obtenemos

U(g = %u(r+10)+%u(r+20) 2§<%u(r+5)+%u(r+15)> +% (%u(r+5)+%u(r+30))

1 ) 1
= gu(r+5)+§u(r+15)+§u(r+30):U(p).
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Ejercicio 60. Tenemos que

ro (@) = Cui(@)  [fa @) @) (@) u (@) + 7 (u (2)) uf ()
’ 5 (2) [ (w (2)) wi (2) [ (2)) wi (2)

Ejercicio 61. Asumo que p =5 7 para algin p y T. Debo demostrar que si us = f (u1) para f céncava
y creciente, entonces p =1 dz. Como f es céncava, la desigualdad de Jensen nos dice que para la variable

aleatoria y = uy (),

F(Ep(y) = Ep (f (y) = Ep (f (1 (2))) = Ep (u2 (2)) = u2 (T) = f (u1 (7)),

donde la segunda desigualdad sale de p >=2 dz y el hecho que uy representa a >3 . Como f es creciente,
f(Ey(y) > f(u1(T)) © Ep (y) > w1 (T) como querfamos demostrar.

Ejercicio 62.A. El retorno esperado para un A cualquiera es la probabilidad de lluvia por el retorno de

lluvia, més la probabilidad de seco por el retorno de seco:
0.5 ($100A810 + $100 (1 — A) $2) + 0.5 (3100733 + $100 (1 — X) $9)

Simplificando queda 100\ 4 550, por lo que el retorno esperado se maximiza con A\ = 1. No hay que hacer
esta cuenta para darse cuenta de eso: en los anos favorables P da 10 y H 9, y en los desfavorables P da 3 y

H 2, y los anos favorables para cada fdbrica ocurren con igual probabilidad.

62.B. La utilidad esperada para un A cualquiera es la probabilidad de lluvia por la utilidad del retorno de

lluvia, més la probabilidad de seco por la utilidad del retorno de seco:

0.5u (100 (8) + 2)) + 0.5u (100 (9 — 6X)) = 0.5+/100 (8A + 2) + 0.51/100 (9 — 6A)

La derivada segunda de esta funcién es

24 — 160) VO — 6 + (12A + 3) VBA £ 2
(8A+2)? (2\ — 3) VI —6A

por lo que las condiciones de primer orden son necesarias y suficientes para un méximo, que se obtiene en

10( <0

A = 0.75. En este caso el A\ 6ptimo es menor que 1, pues invirtiendo también en la fabrica de helados se

diversifica la inversién, y eso es bueno para reducir el riesgo.

Ejercicio 63. No, no puede satisfacer Independencia. Lo veremos de dos formas. Primero, la menos
correcta, que asume que las preferencias se pueden representar con una funcién de utilidad (no podemos
asumirlo porque no lo dice la letra). Si cumpliera independencia, y pudiera ser representada por una funcién
de utilidad esperada, tendriamos

Pz qgepiu(l) +pu(2) + (1 —p1—p2)u(3) = qu(l) +gu)+ (1 -a—g)u().

Tendriamos entonces que

0,1) = (§,O>®u(2)>§u(1)+%u(3)

(1)



lo que constituye una contradiccién.
Una segunda forma de verlo, es notando que si la relacién de preferencias satisface Independencia,

0,1) > (%,0) @%(0,1)+%(1,0) - % (%,0) +%(1,0)

()6

Ejercicio 64 (por Manuel Macera). Dado que L > M sabemos que x;, ~ L = M ~ ), lo cual por
transitividad implica que xy > xp7, y como las preferencias son monétonas xy > xp;. Por otro lado si
xr > xp, por preferencias mondtonas se cumple xp = x)s vy ademds sabemos que L ~ xp = zp ~ M, lo
cual por transitividad implica L > M, con lo cual demostramos la doble implicancia.

Ejercicio 65. Tenemos que u (2) = 2u (3) + 3u (1) y por lo tanto,
1 1 )

%u (1) +3u(2) + 3u() = u () + 15u(3).

111 5 7
(?5@)”1?ﬁ+fﬁ&

Inw=pnw; + (1 —p)Inwy < w=whwy~

Eso implica
Ejercicio 66. Tenemos
P
Ejercicio 67. Son completas, transitivas, satisfacen independencia, pero no son continuas.
Ejercicio 68. (i) y (ii) no se pueden saber, (iii) es cierto, y (iv) falso.
Ejercicio 69.A. Tenemos
sl ESETE R T A D )
ra) — MMl TiTree T TN il T
U 111\ _ min 14243 34+2+1 _o
3'3'3) 37 3 B

69.B. Si ponemos a la loteria degenerada en e en la punta superior del simplex, las curvas de indiferencia

son rectas paralelas y verticales. La curva que pasa por (0,1,0) es la misma que pasa por (%, %, %) .

69.C. Se satisfacen todos los axiomas, menos independencia. No habia que decir lo que viene ahora, pero igual
va la justificaciéon. Continuidad se satisface porque el minimo es una funcién continua, y las dos funciones
que estdn adentro del minimo son utilidades esperadas que satisfacen continuidad. Las preferencias son
completas, porque dados p y g, U les asigna un nimero a cada una de las loterfas, y como los niimeros siempre
se pueden comparar, las loterias también (ademds a esta altura ya podrian saber que si unas preferencias se
pueden representar por una funcién de utilidad, son necesariamente completas y transitivas). Independencia
no se satisface, porque aunque las curvas de indiferencia son rectas paralelas, no crecen siempre en la misma

direccién. En este caso, la direcciéon de crecimiento es hacia el medio. Asi por ejemplo, (0,0,1) ~ (1,0,0)
y los dos arrojan una utilidad de 1, y sin embargo, U (0,1,0) = U (%,0, %) = 2. Para ver que se viola

independencia, notamos que

1

(0,0,1) ~ (1,0,0) % 2 (0,0,1) + 5 (1,0,0) ~ 5 (1,0,0) + 3 (1,0,0).
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Ejercicio 70. No hay a > 0y b tales que u = auy +b, asi que u; no representa a > . También, la degenerada
en 2 es indiferente la loteria que da 1 y 3 con probabilidad % Sin embargo, u1 no respeta eso: la degenerada
es peor. Por otra parte, si hacemos los cédlculos, “pareceria’ que us = 2u — 1, pero como no sabemos cuénto

valen u (4) y ug (4), es imposible determinar si u y us representan a las mismas preferencias.

Ejercicio 71. Para u (z) tenemos

—T

e

ry (x) = e 1

por lo que el coeficiente de aversién al riesgo es constante. De hecho, cualquier funcién de utilidad que tenga

un coeficiente de aversién al riesgo constante es “basicamente” de la forma —e~%*. Para v (z) tenemos

—az~* 1 ¢

ry () = Ve T
Esta es la forma de funcién de utilidad més usada en trabajos empiricos, pues la aversién al riesgo “relativa”
(relativa a la riqueza z) es constante. Es muy utilizada, pues es “obvio” que cuanto més rica es una persona,
menos aversa al riesgo.
Por lo tanto,

T<asry, >y

y ninguna de las relaciones de preferencias es més aversa que la otra.

Ejercicio 72.A (por Manuel Macera). Si 05 ~ %63 + %51 se debe cumplir:

1 1/1 1 1/2 1 1/1 1
552 +3 (553 + 551> ~ g (—53 + —51) +3 (553 + 551) <

111 1 1 1 1 111 7 5
Qa&)”“(?“6&>+G%+ﬁﬁﬁ<laﬁ“(ﬁ%+ﬁ&)

_ 7
Por lo tanto a = 5.

72.B. Graficando las curvas de indiferencia, dado que d3 > d2 = §1, es facil darse cuenta que o > (i; %; %L)
También podemos ver que por independencia:

2 1 2 1 1 7 (2 1
03 > 51<:>§53+§51>~51<:>§53+§51>-§51+§<§53+§51)<:>
2 1 7 5
3BT g0 7 Tl

y dado que 05 ~ %63 + %61 y (i; %; %L) ~ (1—7263 + %51) si las preferencias son transitivas obtenemos que:

2 1 7 5 111 111
Og ~ 553 + 551 - (Edg + 561> ~ <Z, 5, Z) & 0y = <Z, 5, Z)
Que es lo que queriamos demostrar.

Ejercicio 75.A. La utilidad esperada de la persona es

i(w—z)a+1(w)a+%(w+z)a

que es una funcién céncava de z por lo que la condicién de primer orden
d(%(w—z)a—l—i(w)a—k%(w—l—z)a)
dz

a—1

1 W
a+=(w+2)""la=0s 2 =w—

1
=0 —— — [—
4(w 2 2 27— +1
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es necesaria y suficiente para un méximo interior. Como ademds, por la Aplicacién B, sabemos que z (a, w)
serd siempre mayor estricto que 0 y el z(a,w) encontrado es siempre menor que w, no hay soluciones de
esquina.

75.B. Debemos encontrar la derivada de z (a,w) con respecto a a :

2 a1 k=1 L
dz (a,w) wd<21—1a+1) k.zzzrla wd<k—+1>%:w 2 2~ a1

— In2
da da dk  da e (a—172 >0
———N o —
>0 >0

como queriamos demostrar.

75.C. Para la primera demostracién, notamos que si 0 < a < b < 1, entonces u (x) = 2 es una transforma-

cién céncava de v (z) = xb :

Es decir, para f () =z

f es una funcién céncava.

Para la segunda demostracién, calculamos los coeficientes de aversién al riesgo de Arrow y Pratt para
ambas funciones de utilidad y mostramos que el de % es mayor que el de z°. Para cualquier funcién de
utilidad zP el coeficiente de aversion al riesgo de Arrow y Pratt es

p(p—1)a* 1-p

Tp (Zl') - piL’p_l - T

y por lo tanto, r, () > 73 () .

Ejercicio 76.A. Si M = 2, la persona invierte z = 0 en el activo, pues tiene esperanza 1, y tiene riesgo, y
u” < 0 nos dice que la persona es aversa al riesgo.

76.B. La utilidad esperada de invertir z es

L
2

1

r(w—z) iefT(wferzM)

que se maximiza cuando

In(M—-1)

e W) — (M — 1) e M) o (p— 2) =log(M —1) —r(w— 24 2M) & 2 = Y

76.C. Sin hacer los célculos, por la Aplicacién F sabemos que cuando sube r la persona se vuelve més aversa
al riesgo, y por tanto baja su demanda del activo. Después de hacer los célculos, se ve claramente que la
demanda baja con r. Sobre M, es mas complicado, pero dz/dM > 0 (como deberia).

Ejercicio 78.A El individuo debe elegir ¢ para maximizar su utilidad esperada
2 1 2 1
Jou(w+c(z—1)) §dz: Jo —(w+c(z—1)) (w+c(z—1)—20) édz.

Hay tres formas de hacer esto.
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Primera. Darse cuenta que la inversién en z es riesgosa y tiene la misma esperanza que meter el dinero
debajo del colchén, por lo que invertira 0.

Segunda. Calcular la utilidad esperada y maximizarla con respecto a c:
1 1
f02 —(w+ec(z=1)(w+ec(z-1) —QO)Edz = 20w — gcz — w?

que se maximiza con ¢ = 0.

Tercera. Derivar la utilidad esperada con respecto a ¢ (como paso intermedio para igualarla a 0):

d[f(f(w+c(21)>c(llcv+c(zl)20>%d4 _ foz—d(w+c(z—1))(;;+c(z—1)—20)%d2
= fozf(cfwf102—202+wz+022+10)dz:fgc

3
Como ya habfamos determinado, la utilidad marginal de incrementar ¢ es siempre negativa, por lo que
elegimos ¢ = 0. Esta tercera forma de hacer el ejercicio estd s6lo para mostrar que este ejercicio se puede

hacer con la derivada de la integral, o con la integral de la derivada.

78.B. Tenemos
d [f03 —(w+e(z=1)(w+ec(z—1)—20) %dz}

dc
Con w = 2, quedaria ¢ = 4, que es mds de lo que tiene el individuo. Si asumimos que puede pedir prestado

=10 —w — 2c.

sin intereses, estd bien. Si no, tenemos que fijar ¢ = 2 (hdgalo con Kuhn-Tucker).

Otro detalle: la razén por la cual se fij6 w = 2 en este ejercicio es que para x > 10 la utilidad del individuo
es decreciente en la riqueza, y si el individuo tuviera mds de w = 4, y lo invirtiera todo, su riqueza podria
llegar a ser 12, que le darfa menos utilidad que una riqueza de 10.

Ejercicio 79. Si 7 es mejor que p para el nivel de riqueza inicial w, significa que

_ Zﬂ_iefa(er:L‘i) > - sz —a(w+z;) o Z 7rz AW o—amw; sz awefazi] PN
—emow Zﬂ_ie—axi > —e—ow Zpie—axi PN _e—a'w Zﬂ_ie—au > _e—a'w Zpie—am PN
o Z ,/Tiefa(wurzi) > - Z piefa(w’jtxi)

como querfamos demostrar.

Ejercicio 82.A. Tenemos que p = %510 + %620. Como el individuo es averso al riesgo, y 20 = % x 154 % * 30,

por definicién de averso al riesgo tenemos que dog >~ %(515 + %530, y por independencia
2 1 2 1/2 1
-0 —0g9 = =0 ) —030 | - 18
310+320310+3<315+330) (18)

De la misma manera 10 = % *H+ % %15, y por la definicién de aversién al riesgo obtenemos d1¢ = %55 + %515.
Por independencia, de (18) obtenemos

2 1/2 1 2 /1 1 1/2 1 1 5 1
- Z - (2 - —Z (= Z (2 — I - - = q.
p= 3510+ 3 <3515+ 3530> =3 <255+ 2515) + 3 <3515+ 3530> 355+ 9515 + 9530 q

Otra forma de hacerlo, pero hay que asumir que el individuo tiene una utilidad esperada, es la siguiente.
Recordamos que si es averso al riesgo la utilidad es céncava, por lo que

2 1 2 (1 1 1 /2 1
E, = =u(10)+=-u(20)==-u( =5+ =15 -u (=154 =30
U 3u( )+3u( ) 3u<2 +3 >+3u<3 +3 )
21 1 5

Y

: [§u (5) + 5u (15)] s Eu (15) + 3u (30)} = 2u(5) + 2u(15) + gu(30) = Fyu
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Ejercicio 83.A. El individuo debe comparar la utilidad de tener la loteria, pu (w + A) + (1 — p) u (w + B)
con la utilidad de venderla, u (w + 7). Si esta ultima es mayor, la venderd, si es menor, no. El precio minimo

al cual estd dispuesto a venderla es aquél que las iguala:
u(w+7rA) =pu(w+A+A-puw+B) o1t =upu(w+A) +1-pu(w+B))—w. (19)

83.B. Si no compra, el individuo tiene una riqueza inicial de w, y una utilidad de u (w) . Si compra la loteria
a un precio m, tendrd una utilidad de pu (w — 7+ A) + (1 — p)u (w — 7 + B). Comprara si y sélo si esta
dltima utilidad esperada es mayor que u (w) , y el precio méximo al cual estd dispuesto a comprar viene dado
por

u(w):pu(w—ﬂB—i—A)+(1—p)u(w—7rB+B) (20)

83.C. Los precios vienen dados por distintas ecuaciones, por lo que no tienen por qué ser iguales. La razon
es que puede haber un efecto ingreso. Si el individuo se vuelve menos averso al riesgo cuanto més grande es
la riqueza, la loteria en la Parte A vale mds que la misma loteria, para el mismo individuo, en la Parte B,
por lo que el precio de venta serd mayor que el que obtendriamos en la Parte B. Para que los precios sean
iguales, se tiene que cumplir la ecuacién 20 evaluada en 7 = 7. Dos formas triviales en que se cumple esto
—axr

es con una utilidad lineal, y con A = B. También si el individuo tiene una funcién de utilidad tipo —e

(verifiquelo).
83.D. De la Parte A obtenemos
1 1 2
= (5\/3%+ (1—5)\/ﬁ> —9=16

y de la Parte B,

1 1 128
= — — T —|— - — T <:>7r = < =7,
V9 2\/36 B 2\/16 B & b — <16 A
83.E. De la Parte A,
1 1
7 = —log <§e—36 + 56_16> —9=7.6931

y en la Parte B verificamos que son iguales los precios (por el Ejercicio 79). Sustituimos 74 en la ecuacién
de la Parte B:

1 1 1 - —16)~1 1 —36 _16\—1
—e 9 = fieﬁA_gﬁ _ §e7rA_16 _ 756101%(%6 364 1c 1()) _45 §elog(%e 3 1 16) .
-1 —25 —20
- ! 16—36 + l6_16 (6_45 + 6_25) = w
2\ 2 2 e=16 (1 4+ ¢—20)
= 6_9

Ejercicio 86. La riqueza final para cada retorno de z es 10 — 2 4+ 2z, por lo que la utilidad esperada es
/ e 3(8+22)9,—22 g, _ 716724
0 4

Ejercicio 87.A. Con u(A4) =1y u (D) = 0, tenemos:

w(B) = 1—90@,,(A)+1—10u(p)@u(3):1—90
w(C) = %u(A)JrQ—lOu(D)@u(C):%.



87.B. Las distribuciones de probabilidad sobre los cuatro estados que genera cada criterio, condicional a si
hubo huracén o no, son:

Criterio 1 Criterio 2
No Evacta Evacia No Evacia Evacia
No Huracén Pr(A)=4 Pr(B)=14 ¥ No Huracén Pr (A)=3 Pr(B)=3
Huracén  Pr(D)=4 Pr(C)=3 Huracén  Pr(D)=4 Pr(C)=42

Como la probabilidad de huracén es 1%, la distribucién de probabilidades sobre los 4 estados (la incondi-
cional) es entonces

Criterio 1 Criterio 2
No Evacuia Evacia No Evacia Evacia
No Huracén Pr(A) = 8% Pr(B) = 135 ¥ No Huracén Pr (A) =388 Pr(B) =55
Huracén — Pr(D) = 1o Pr(C) = 135 Huracén Pr(D) = 505 Pr(C) = 5055
Las utilidades de los criterios son entonces
891 99 9 1
UviCl) = —u(A)+—u(B)+—u(C)+ —u (D)=
(1) 1000" Y+ 7000 B+ 10004 (©) * Top0% ()
891 99 9 9 19 19773
= — — = = 0.98865
1000 + 1000 10 + 100020 20000
1683 297 9 19 19 39367
U((C2) = — — = = 0.98418
(€2) 2000 + 2000 10 + 200020 40000

Problem 40.A. We must have U (z2) = p for a p such that receiving x5 for sure is indifferent to receiving
$9 with probability p and $1 with probability 1 — p.

Part B. 4% The bet would be fair since the expected value of the bet is 0 : with probability % his payoff is
1 —4 = —3 and with probability % his payoff is 9 — 4 = 5, so that
5 3

0=-23+5
ER

Part C. 4% No he wouldn’t. Without making any calculations, we know that /z/3 is a concave function,
so that the individual is risk averse, and therefore would avoid a bet with expected value of 4, but with risk.
If we do the calculations, we confirm this suspicion. If he has an initial wealth of $4 and he doesn’t take the
bet, his utility is 3@ = % If he take the bet, his expected utility is

5\/474+1 3\/474+9 51 3 7
s 3 T3 3 837837

Part D. 6% The fair (actuarilly fair) price would solve

Ozg(x—S)—l—g(x—O)@x:&

The individual’s utility function when he does not purchase insurance is
5 3 7
—V14+-=v9=-
8 Vit 8 Vo 4
and when he does for a price of y his utility is /9 — y. Therefore, he would be willing to pay up to

95

_ P 5037555
16 >

7
9—y=-<%
y=3<v
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88.A. The investor’s preferences are represented by U = U(W;, Ws) where W, denotes the level of wealth
in state k: W7 =5x4 + 20z and Wy = 62 4.

88.B. Now preferences are represented by:
1 2
U=UW;,Ws) = gu(Wﬂ + gU(Wz)

where u(+) denotes the investor’s von Neumann Morgenstern utility function (as a function of wealth in state
k, W).

88.C. The investor must choose x4 to maximize

1 2 1 390 — 2 2 1 300 — 20\ 2
Su(504+200p) + Su(6ra) = Fu(5za +20 (Txf‘)) + Sul6ra) = g\/5x +20 (Tx) + .

To get this result, take the first order condition

1 390 — 2 2 1 390 — 2 2
S5 +20 (%)) +Zu(6ra) = U <5x,4 +20 (%)) [~15] + Su/(624)6 = 0

390 — 2 2 5
du/(6z4) = 5u (Hza+20 2R o =
2 V6
T2, [ow 4 20 (80522

and solving for & by squaring both sides we obtain z4 = 160 and xp = 35. La FVR se cumple pues

1 1 3 2 1 V15 1 1 18

= 1+ - |+ c—==(1+2)= == 14—

324/160 % 5 + 35 * 20 2 32/160 % 6 90 324/160 % 5 + 35 * 20 2
88.D. The optimal choice has xp = 0. To see so, take the derivative of the utility

%\/6x—|— 18 (—390_ Qx) + g\/@

2 3

with respect to x4 and evaluate at x4 = 195 :

a (/60 +18(2520) + 2V60)  f A —mn- o
dx - 3z /B85 — 2z

This means that the individual maximizes his utility at z4 = 195 and p = 0. The idea is that the individual

=0
=195

is risk averse, and since the expected returns of both assets are the same, and those of B are riskier, the
individual only wants asset A.

88.E. The optimal demand is with x4, = 195, but the FVR is not satisfied, because the first order conditions
are not satisfied in this corner solution.

Ejercicio 91.A. El valor esperado de p es 1, y su utilidad esperada es 1 — 2 = —1. El valor esperado de ¢
es % x 1+ % x4+ % x b = % y su utilidad esperada es % —-5= —% que es peor que —1. Aunque aumenta el
valor esperado, el individuo “aspira”’ a 5, en vez de aspirar a 3, y por eso su utilidad es menor.

91.B. La utilidad de cualquier loteria degenerada es 0, pues a; — h (d4,) = a; — a; = 0.

91.C. Para ver que no se cumple monotonia notamos que J5 corresponde a un caso con o = 1, y dg
corresponde a = 0, y sin embargo no tenemos d5 > dg.
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Equilibrio General

En Equilibrio General se estudia la economia en su conjunto: como se determinan todos los precios y
las asignaciones para todos los individuos y todas las firmas en todos los mercados. Hay al menos tres
razones para estudiar Equilibrio General, y no quedarse en el equilibrio parcial. Primero, hay preguntas
que no pueden contestarse con un andlisis de equilibrio parcial. Por ejemplo, estudiar la determinacién
del precio de los zapatos en equilibrio parcial estd bien, pues se puede tomar como dado el ingreso de los
individuos. Pero el problema del crecimiento econémico, que es el estudio de cémo crecen los ingresos, nunca
podria hacerse en equilibrio parcial, pues no se puede tomar como dado el ingreso. Es m4s, los problemas
econdémicos més importantes son los que no se pueden estudiar en equilibrio parcial. Un segundo motivo para
estudiar Equilibrio General es que la pregunta quizds més vieja de economia, “; Funcionan eficientemente los
mercados?”, necesariamente debe ser analizada en este contexto. De hecho, es una de las primeras preguntas
que se estudiaron fue precisamente esa, y la vamos a estudiar en este curso. Finalmente, en algunos casos, la
respuesta a una pregunta, cuando se utiliza el herramental de equilibrio parcial, puede ser errénea. Después
de ver algunas definiciones veremos un ejemplo para mostrar este problema.

En la economia que estudiaremos, hay I > 0 consumidores, J > 0 firmas, y L > 0 bienes. Cada
consumidor tiene preferencias (completas y transitivas) >, definidas en su espacio de consumo X; C RL.
Cada firma j tiene un conjunto de posibilidades de produccién Y; C R” que es cerrado y no vacfo. Los
recursos iniciales de la economfa, su dotacién inicial, es un vector @ = (@y, ...,@r) € R¥. Para cada individuo
i, w; = (w14, .-, wr;) €s la dotacion inicial de recursos.

Una asignacioén (z,y) = (1, ...,x1,y1, ..., yJ) €8 una especificacién de un vector de consumo z; € X; para
cada consumidor ¢ = 1, ..., I y un vector de produccién y; € Y; para cada firma j = 1, ..., J. Una asignacién
es alcanzable (posible) si >, x;; =w; + Zj yi; para cada bien [. Es decir, si

I J
D @ =T+,
i=1 j=1

Para completar la descripcién de una economia, hace falta especificar la estructura de propiedad de las
firmas. Para cada consumidor ¢ existe 6; = (6;1,...,60,5), donde 6;; € [0,1] es el porcentaje de los beneficios
de la firma j que pertenecen al consumidor i. Por supuesto, para cada j,

=1
Z 9”‘ =1
=1

Una asignacién alcanzable (z,y) es Pareto Optima si no existe otra asignacién alcanzable (z’,y’) que
Pareto domina a (x,y). Eso es, no existe una asignacién alcanzable (2/,y") tal que 2} »=; z; para todo i, y
existe algin ¢ para el cual z > x;.

Ejemplo 0. Dada una economia especificada por

({R3,u(@) =21 +22,w=(1,0)} {Y ={y e R* 1o < V=u1}})

encontrar las asignaciones Pareto Optimas. En este contexto, si una asignacién es Pareto Optima maximiza
la utilidad del individuo sujeto a la tecnologia relevante. Es decir, se debe elegir z1, z2, y1, Y2 para maximizar

T+ T2
sujetoax; = 14y
T2 = Y2
Y2 < —Y1-
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Del tercer y cuarto renglén sacamos xo < /—y; v del primero zo < /1 — 1. Por lo que se debe elegir x1, x5
para maximizar

1+ o
sujeto a o < 1— 2.

Graficamente tenemos que debemos elegir la curva de indiferencia mds alta que nos permita la tecnologia.

La solucién a este problema es z1 = 2, y la asignacién Pareto Optima es (z*,y*) = ((£,3),(-3,3)). 1

Dada una economfia especificada por ({(Xi, =, Wi, 91)}22{ , {Y}};i‘{) una asignacién (z*,y*) y un vector de

precios p = (p1, ..., pr) constituyen un equilibrio Walrasiano o competitivo si

(i) Para cada j, y; maximiza beneficios en Yj, es decir,
p-y; < p.y; para todo y; € Y;
(ii) Para cada i, z} es maximal para =; en la restriccién presupuestal
j=J
T pr; < pw; + Z 0:jpy;
j=1

*

Es decir, no existe x; en la restriccién presupuestal, tal que x; >; z}.

(i) ¥, =3+ 5,5
Ejemplo 0 Continuado. Dada una economia especificada por

({(R3,u(z) =21 +a2,w=(1,0),0=1)} ,{Y ={y e R* 1 4o < V/=u1 }})

encontrar el o los equilibrios competitivos. (Gréficamente, la restriccién presupuestal pasa por w + y (p)).

El siguiente ejemplo, tomado del trabajo “Factor prices may be constant but factor returns are not,” de
D. Bradford en Economic Letters (1978) ilustra cémo si se hace un anélisis de equilibrio parcial, la respuesta

a una pregunta puede ser equivocada.

Ejemplo 1. Anélisis de la Incidencia de un Impuesto. Hay una economia con N (grande) ciudades y en
cada ciudad hay una firma que utiliza trabajo [ para producir un tinico bien con una funcién de produccién f
estrictamente céncava. El bien se comercia en un tinico mercado nacional. Hay M consumidores que ofrecen
ineldsticamente M unidades de trabajo: sélo derivan placer del bien y no del ocio. Los trabajadores se pueden
mover libremente entre ciudades para buscar el salario més alto. En el andlisis que sigue, normalizamos el
precio del bien a 1, y llamamos w, al salario en la ciudad n. Como los trabajadores se pueden mover

libremente, debemos tener wy; = wo = ... = w,, = w. En equilibrio, cada firma maximiza beneficios

F) —wl

y como [’ es estrictamente decreciente, la condicién de primer orden
fr)=w

asegura que en cada ciudad se contrata a la misma cantidad de gente M/N.
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Supongamos ahora que la ciudad 1 decide poner un impuesto al trabajo. Analizaremos sobre quien recae
el pago del impuesto, su incidencia, primero en equilibrio parcial, y luego en equilibrio general.

Si la tasa de impuesto es t y el salario en la ciudad 1 es wq, la cantidad de trabajo contratada por la
firma 1 serd el Iy (¢) tal que

@) =w +t. (21)
Como la cantidad de ciudades es grande, el salario en las otras ciudades no cambiard de su nivel pre-impuesto
de W, y como el trabajo se puede mover libremente, tendremos f’ (I1) = @ + t. Este andlisis revela que el
ingreso de los trabajadores se mantiene y que como la firma 1 contrata menos gente a un precio mayor,
el impuesto recae sélo sobre ella. La intuicién tipica de estos casos es que, como la oferta de trabajo es
infinitamente eldstica, la carga del impuesto recae sobre la firma 1.

Analizamos ahora el problema desde el punto de vista del Equilibrio General. Por la libre movilidad
sabemos que el sueldo en las ciudades 2 a N serd el mismo. Como en principio puede depender de la tasa de
impuestos, llamaremos a ese sueldo en las demds ciudades w (¢) . También por la libre movilidad sabemos que
el salario para los trabajadores en la ciudad 1 debe ser w; (t) = w () 4+ ¢. Ademds, como f’ es decreciente,
la condicién de primer orden

fra)=w)
asegura que la cantidad de trabajo contratada en cada ciudad 2, ..., N sea la misma. Por lo tanto, la condicién
de oferta igual demanda en la definicién de equilibrio competitivo, la condicién (iii), requiere que

(N —1)1(t)+ 15 (t) = M.

De esta ecuacién obtenemos lq (t) = M — (N — 1)1 (t). Sustituyendo en la condicién de primer orden de la
firma 1, la ecuacién (21), queda

(M —(N-=1)1(t) =w(t)+t.
Consideraremos ahora un aumento marginal en la tasa de impuestos desde 0. Para eso, tomaremos derivadas
en esta ecuacién, y evaluaremos en 0, recordando que {1 (0) =1(0) = M/N y que wy (0) = w(0) :

FM = (N=DI0)(1-N)'(0) = w' (0)+1e f (M—(N—l)%) (1—N)I'(0) = w' (0) + 1
o g (%) (N = 1)1 (0) = w (0) + 1. (22)
De derivar la condicién de primer orden de las firmas en las demés ciudades, f' (I (£)) = w (¢) , obtenemos
1A ) = () = " L) (0) = uf (0) = f” (%) U (0) = (0). (23)
De las ecuaciones (22) y (23) se deduce que
0! (O) (N = 1) =w/ (0) + 1w/ (0) = .

Como habiamos deducido del anélisis de equilibrio parcial, para N grande, el salario en las demés ciudades
cambia muy poco. La diferencia entre el andlisis de equilibrio parcial y el de equilibrio general se da en
la incidencia. Contrariamente a lo que habia sugerido el andlisis de equilibrio parcial, ahora mostraremos
que la suma de los beneficios a nivel de toda la economia no cambia, por lo que el impuesto recae sobre los
trabajadores.

Llamamos 7 (w) a los beneficios de la firma cuando ha elegido la cantidad 6ptima de trabajo para un
salario de w. Tenemos entonces que los beneficios totales en la economia son

(N=1)m(w (@) +7(w(t)+1).
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Por lo tanto, el cambio en los beneficios derivado de un cambio marginal, comenzando en 0, de la tasa de
impuestos es

(N =1) 7" (w (0))w' (0) + 7’ (w (0)) (w' (0) + 1) N’ (w(0)) w' (0) + 7 (w (0))

= —7'(w(0)) + ' (w(0)) =0
como querfamos demostrar.

Primer Teorema del Bienestar

Una relacién de preferencias »; en el espacio de consumo X; es localmente no saciable en x; € X; si
para cada € > 0 existe un = € X; tal que ||x; — 2}|| < ey 2} > z;. Las preferencias > son localmente no
saciables si son localmente no saciables en todo x; € X;, es decir, si para cada z; € X; y cada € > 0 existe

un z; € X; tal que ||z; — z}|| < ey x} = ;.

Ejercicio 2 (Ejercicio 27 del repartido de ejercicios). Sea X; = RY, Y = —R% (no hay produccién)

y sea =; una relacién de preferencias que es localmente no saciable.
Parte A. Demuestre que si z* = x para todo z tal que px < K, y ™ = x*, entonces px*™* > K.

Parte B. Demuestre que si z; (p, pw;) es la demanda Walrasiana del individuo %, con preferencias localmente

no saciables, entonces x; (p, pw;) cumple la Ley de Walras: px; (p, pw;) = pw,.

Parte C. Demuestre que si z; (p, pw;) es la demanda Walrasiana del individuo 4, con preferencias localmente
no saciables, y que si

I I
Z Tij (p,pw;) = sz‘j
i=1 i=1

para todo j # k y algtin p > 0 (p; > 0 para todo [ = 1,2, ..., L) entonces

1 1
ink (papwi) = Zwik‘7
=1 =1

por lo que p es un precio de equilibrio (Pista: utilice la Parte B).

Nota: La Parte B y la Parte C son las dos versiones de la Ley de Walras. La Parte A es la versién
pzx (p,pw) = pw (con K = pw), y la Parte B es la versién “si oferta igual demanda en L — 1 mercados, la

oferta es también igual a la demanda en el L—ésimo.”

Primer teorema del bienestar. Si las preferencias son localmente no saciables, y si (z*,y*,p) es un

equilibrio competitivo, entonces la asignacién (x*,y*) es Pareto Optima.

Paso 1. Demostraremos primero que si (z,y) Pareto domina a (z*,y*), debemos tener que

i=1 i=I Jj=J
pri > Zp w; + Z Gijy;‘ . (24)
i=1 i=1 j=1
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Si (x,y) Pareto domina a (z*,y*), existe algin i tal que z; >=; . Como (z*,y*), p son un equilibrio, la
condicién (ii) de la definicién nos dice que
j=J
pi > pwi + Y 0iipy; - (25)
j=1
Es decir, si la canasta x; es estrictamente mejor que z}, y el individuo ¢ no eligié x;, quiere decir que no le
alcanzaba la plata para comprarla.
Para el resto de los individuos, si (z, y) Pareto domina a (z*, y*) , tenemos que, por el Ejercicio 1, z; =; =}

implica
j=J

P > pwi+ Y 0ipy;- (26)
=1

Sumando ahora para todos los individuos, las ecuaciones (25) y (26) implican la ecuacién (24), que es lo que

querfamos demostrar.

Paso 2. Demuestrar que, como y; maximiza beneficios,
> pzi>po+ > py; (27)
i J

Para demostrar esto, recordamos que para todo j se cumple que Y. 6;; = 1, y por lo tanto,
=1 j=J

i=I j=J
dop|witd tuyy | = prﬁpZZ%yj
i=1 j=1

=1 j=1
j=J i=I

= prl +pZ Zeljyj

j=11i=1
i=1 =
- SwnSy
i=1 j=1
Combinando esto con (39) obtenemos

i=1 i=1 Jj=J
ZP%>ZPM+;DZZJ;- (28)
i=1 i=1 j=1

Finalmente, como y; maximiza beneficios a los precios p para todas las firmas, obtenemos

i=I j=J i=I j=J j=J
DPiEPY Y 2D peitp) i =rE DYy
=1 Jj=1 i=1 j=1 j=1

y combinando esta tltima ecuacién con (28) obtenemos el resultado en (27) que es lo que queriamos

demostrar.

Paso 3. Como la ecuacién (27) implica que

in—w—Zyj >0
i J
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obtenemos que ), x; — W — ) i Y # 0, lo que contradice que que (z,y) es una asignacién alcanzable. Por
tanto (z*,y*) es Pareto Optima. I

Ejercicio 3 (Ejercicio 11 del repartido de ejercicios). En esta economia hay dos agentes, el 1 y el 2.
Las utilidades y dotaciones estdn dadas por

{1 sixy+ax9>1

U1 = .
0 en caso contrario
1
Uy = T{T3
W1 = W2 = (1, 1)

Parte A. Verifique que
[%1,1'2,])} = [(17 1) ) (17 1) ; (17 1)]

es un equilibrio competitivo de esta economfia.

Parte B. La asignacién [wl, xz] = [(1,1),(1,1)], jes Pareto Optima? Sino lo es, cual asignacién la domina?

Parte C. Si la asignacion de la Parte B no es Pareto Optima, ;jporqué falla el Primer Teorema del Bienestar?

Parte D. Demuestre que no hay ningin equilibrio que sea Pareto Optimo (pista: encuentre la tnica
asignacion Pareto Optima que le da una utilidad de 1 al individuo 1 y demuestre que no es un equilib-
rio para ningun vector de precios (1,p), y haga lo mismo para la tnica asignacién Pareto Optima que le da
una utilidad de 0 al individuo 1)

Ejercicio 4 (Ejercicio 12 del repartido de ejercicios). Sean w; = ws = (1,1) y

1 1
ui (r1) = TP

=
=

uz (w2) = @323 +an

de tal forma que el individuo 2 disfruta del consumo de que tenga 1 del bien 1 (por ejemplo, podria ser que

el bien 1 es “musica” o “plantas de jardin”). Esto es lo que se llama una “externalidad”.
Parte A. Encuentre el inico equilibrio de esta economia.
Parte B. Muestre que el equilibrio no es Pareto Optimo. Explique porqué.

Ejercicio 5. Sea X = Rﬁ y sea = una relacién de preferencias monétona, es decir, tal que y > x (es decir
y; > x; para todo i) implica y > x. Demuestre que si una relacién de preferencias es monétona, entonces es

localmente no saciable.

Pasamos a una economia llamada de generaciones superpuestas. Los periodos de tiempo sont =0,1,2, ...
En cada periodo hay un joven y un viejo (que fué joven el periodo pasado). Las dotaciones para cada individuo
son de una unidad del tinico bien de la economia en cada periodo. Siendo j; el consumo del joven en el periodo

t y v; el consumo del viejo en el periodo ¢, la funcién de utilidad del individuo que es jéven en ¢ es

. _ o, l—a
ug (Jt, vir1) = Ji Vigr -
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Para el viejo en el periodo 0, lo tinico que nos interesa, es que su utilidad es creciente en su consumo, pero
para simplificar, asumamos que su utilidad de consumir vy es vg.
Para cada jéven en t = 0, 1,2, ... el problema de maximizacién dados los precios (pg,p1,p2,...) es el de

elegir (j:,vry1) para maximizar

s, 1l—a
Jt Vg1

sujeto a pjs + Prr1Vi+1 < Pr + Dit1

La solucién a este problema es

. «
Jgo = — (Pt +pit1)
Y43
11—«
Vi41 = (Pt + Pes1) -
Dt+1

Para el viejo en el periodo 0, su ingreso es pg, y se gastard todo su ingreso en consumo del bien, por lo que
su demanda del bien es 1.

Para que los precios (po, p1, P2, ...) sean de equilibrio, debemos tener que oferta igual demanda en todos
los periodos. Como la oferta es 2 en todos los periodos, tenemos que

t=0 2=1+joe 1=2=(po+p) & p =52

- — (04 — 2
t=1 2=uv+5=42po+p)+ = (p1+p2) Sp2=po(5%) .

Normalizamos py = 1, adivinamos que p; = (I’T“)t y lo demostramos por induccién. El primer paso
(demostrar que se cumple para algun t) ya lo hicimos, pues mostramos que p; = 1?% Ahora asumimos que
es cierto para t < T y lo demostramos para T. Tenemos que

. 11—« «
2 = wvri+jro1 = e (pr—2 +pr-1) + P (pr—1+p7) &

- (5 (5 ) (5 )
S (1 aa>T

como querfamos demostrar.

Dado esto, vemos que para todo t,

. o
Jo = —@e+p)=1
Dt
-«
Vel = (pt +pi41) =1
Pt+1

como era obvio: en el perfodo 0, el viejo se come su dotacién, y el jéven también, por lo que el viejo en el
periodo 1 debe comerse su dotacion, y asi sucesivamente. Con esta asignacién, la utilidad de las personas en
equilibrio es 1.
Sia< %, esta asignacién no es Pareto Optima, pues les da a todos una utilidad de 1, mientras que la
asignacion
(v, 1) = (2(1 — @), 2)

arroja una utilidad de 2 (1 — ) > 1 para el viejo, y 2a® (1 — )'™® > 1 para todos los demés.
. Qué es lo que pasa en este equilibrio, que no es Pareto Optimo? Para empezar, lo que sucede es que

como « < %, eso quiere decir que a los individuos les gusta mds consumir cuando son viejos que cuando son
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jovenes, pero en equilibrio deben consumir lo mismo en ambos periodos. El problema es que no hay forma
de “transferir” recursos de un periodo al siguiente.

Una segunda forma de ver el problema, es tratando de entender porqué falla el Primer Teorema del
Bienestar. Para ello escribimos formalmente la economia del modelo de generaciones superpuestas como un
modelo de equilibrio general. En esta economia hay infinitos agentes (uno por cada nimero natural) y otros
tantos bienes (con la interpretacién siendo que trigo hoy es un bien distinto a trigo manana), y una sola
firma, cuyo conjunto de posibilidades de produccion es {(0,0,0,...)} (es decir, no puede transformar ningin
bien en ningtin otro bien). El espacio de consumo de cada consumidor es R x R x R.... La dotacién inicial

de la economia es (2,2,2,...) y la del jéven del perfodo t es

0,0,...0,1,1,0,0, ...
——
t—1
La estructura de propiedad de las firmas no importa, pues los beneficios son siempre 0, pero para ser correctos,
ponemos que la firma pertenece, por ejemplo, al viejo del periodo 0. Formalmente, si el viejo en el periodo ¢
es el agente ¢, tenemos que 0y = 1y 6; = 0 para todo ¢t > 0.
Ahora vemos que si a < %, pr — 00, y la demostracion del primer teorema del bienestar falla, pues varias

de las sumatorias divergen.

Ejercicio 6. Encontrar el paso exacto en el cual falla la demostracién del primer teorema del bienestar con

la economia de generaciones superpuestas.

Ejemplo 92 Hay dos bienes en la economia. El individuo 1 tiene la dotacién wy, = (2,0) y el 2 la dotacién

9

wy = (0,5). Las utilidades son u; (z) = B + 2 y uz (z) = 2 — Con estas utilidades, las demandas

r1+1°
cuando los precios son (1,p) son
(2,0) sip>5h
s . 3VpP—p p—3/p? +5p?
n=4 (%) s€l02sip=5 yx2< PP P p2+p>
(0,%) sip<5 P P

Cuando p = 1, tenemos que las demandas son (0,2) + (3 —1,1 —3+45) = (2,5), por lo que los precios (1, 1)
son un equilibrio.

Ejercicio 93 Si en cambio asumimos que la oferta total en el mercado es (1,5) (porque el individuo 1 se
olvidé donde habia dejado una unidad del bien 1), y asumimos (y después chequeamos que p es menor que
5) el p que equilibra el mercado del bien 1 es aquél que hace 0 + 34@ =l&ep= %. Supongamos que
luego de esto, el individuo 1 encuentra la unidad que perdid, entonces habréd vendido una unidad del bien 1,
y consumird (1,0) + (0, ﬁ) = (1, %) ; el individuo 2 consumird

(@' -8 (3 -3/(@) +5 () (11,
G |

1
(5) 4
En este caso, el individuo 1 se comporta como un monopolista, y estd mejor (antes consumia (0,2) y

ahora (1, %) , que es mas en ambos bienes). El problema es que la asignacion es ineficiente: si el individuo 1
le diera 1 unidad del bien 1 al 2, que le darfa una unidad del bien 2, ambos estarian mejor ya que

mw 9 (r__9 N__1
4 141 4 241/ 2



Ejercicio 94 El individuo 1 tiene una utilidad uy (1, x2) = 122 y el individuo 2 us (z1, 2) = x1x2. Hay
una unidad de x; y otra unidad de xs.

Parte A. Encuentre todas las asignaciones eficientes de esta economia.

Parte B. Si las dotaciones son wy = (1,0) y we = (0, 1) encuentre el equilibrio competitivo de esta economia.
Parte C. Suponga que el individuo 2 actia en forma competitiva (tomador de precios) y el individuo 1 “se
olvida” que tiene % unidad del bien 1, y actia en forma competitiva; los precios igualan la oferta de % del
bien 1 y su demanda. La canasta de consumo de 1 es la canasta de este nuevo equilibrio, mas % del bien 1.

Esta asignacion jes eficiente? Al individuo 1 jle conviene actuar asi?
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Otras tres versiones del PTB

Una asignacién alcanzable (x,y) es Débilmente Pareto Optima si no existe una asignacién alcanzable

(2',y') tal que =} >; z; para todo i.

Teorema 7. Otra versién del Primer teorema del bienestar. Si (z*, y*, p) es un equilibrio competitivo,

entonces la asignacién (z*,y*) es Débilmente Pareto Optima.

Antes de hacer la demostracién, piensen un segundo. Fijense que los supuestos son mds débiles (no
asumimos que las preferencias son localmente no saciables) y la conclusién es més débil (hay asignaciones

que son Débilmente Pareto Optimas, pero que no son Pareto Optimas).

Paso 1. Demostrar que si (x,y) pareto domina débilmente a (z*,y*), debemos tener que

d_pai> p|wit )y 0y
i i j
Paso 2. Demostrar que, como y; maximiza beneficios,
> pxi>pw+ Y py; (29)
i J

Paso 3. Demostrar que la ecuacién anterior implica que (z,y) no es una asignacién alcanzable, y que por
tanto (z*,y*) es Débilmente Pareto Optima.

Una asignacion (z,y) = (z1, ..., 21,91, ..., ¥J) s una especificacién de un vector de consumo z; € X; para
cada consumidor ¢ = 1,...,1 y un vector de produccién y; € Y; para cada firma j =1, ..., J. Una asignacién
es alcanzable (posible) si ), x1; = @w; + Zj yi; para cada bien [. Es decir, si

I J
dm=w+ Yy
i=1 j=1

Una asignacién alcanzable (z,y) es Pareto Optima si no existe otra asignacién alcanzable (z/,y’) que

Pareto domina a (z,y). Eso es, no existe una asignacién alcanzable (a,y’) tal que z =; x; para todo i, y

existe algtn ¢ para el cual z} > x;.

Dada una economia especificada por ({(Xi, ii)le} ,{Yj}‘j]:1 ,w) una asignacién (z*,y*) y un vector de
precios p = (p1,...,pr) constituyen un equilibrio con transferencias si existe un vector de riquezas
(w1, ..y wr), con Y w; = pi+ ), p.y; tal que

(i) Para cada j, y; maximiza beneficios en Yj, es decir,
p-y; < p.y; para todo y; € Y;
(ii) Para cada 4, x} es maximal para >; en la restriccién presupuestal
{z; : px; <w;}
(i) ¥, 75 =+ 5, 4]
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Finalmente, una relacién de preferencias =; en el espacio de consumo X; es localmente no saciable si

para cada x; € X; y cada € > 0 existe un a} € X; tal que ||z; — z}|| < ey =} > x;.

Teorema 8. Primer teorema del bienestar. Silas preferencias son localmente no saciables, y si (z*, y*, p)
es un equilibrio con transferencias, entonces la asignacién (z*,y*) es Pareto Optima.

Paso 1. Demuestre que si (z,y) pareto domina a (z*,y*), debemos tener que
> Y
i i
Paso 2. Demuestre que, como y; maximiza beneficios,

Zp.:ci > p.w+ Zpyj (30)
i J

Paso 3. Demuestre que la ecuacién (30) implica que (z,y) no es una asignacién alcanzable, y que por tanto

(x*,y*) es Pareto Optima.

Ejercicio 9. Demuestre que todo equilibrio competitivo es Pareto Optimo utilizando este tltimo Teorema.

Pista: demuestre que todo equilibrio competitivo es un equilibrio con transferencias.

Ejercicio 10 (Ejercicio 25 del repartido de ejercicios). En este ejercicio se demostrara que aun si el
individuo puede saciarse (las preferencias no son localmente no saciables) los equilibrios son Pareto Optimos.
Suponga que cada X; es no vacio y convexo. Unas preferencias =; en X; son estrictamente convexas si

' =; x y & # x implican que ax’ + (1 — @)z »; « para todo « € (0,1).

Parte A. Demuestre que si las preferencias son estrictamente convexas, para cada ¢ existe a lo sumo un z;

que sacia al individuo (xf »=; z; para todo z; € X;).

Parte B. Demuestre que si no existe un z{ que sacia al individuo y las preferencias son estrictamente

convexas, entonces las preferencias son localmente no saciables.

Parte C. Demuestre que si atin si existe un z§ que sacia al individuo, si las preferencias son estrictamente

convexas, ~; es localmente no saciable en z;, para todo z; # x.

Parte D. Demuestre que si las preferencias son estrictamente convexas y x} es 6ptimo para >; en la
restriccién presupuestal px < K y zf* >=; x} entonces sélo hay dos opciones: o ] =z o pzi* > K.

Parte E. Demuestre que si las preferencias son estrictamente convexas todo equilibrio competitivo es Pareto

Optimo (si hace la Parte F, ignore esta parte, y serd tomada como correcta).

Parte F. Demuestre que si las preferencias son estrictamente convexas todo equilibrio con transferencias es

Pareto Optimo.
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Existencia

Una pregunta relevante es: jbajo qué condiciones sobre las primitivas de la economia (asignaciones,
utilidades, etc) es seguro que existe un equilibrio competitivo? Nos gustaria estar seguros que si escribi-
mos un modelo y decimos “en equilibrio pasa tal o cual cosa” no estemos hablando de un conjunto vacio.
Analizaremos ahora una versién muy simple de un teorema de existencia de equilibrio general.

Sea z; (p, pw;) la demanda “Walrasiana” de los individuos (es decir, el conjunto de canastas preferidas
por el individuo cuando los precios son p y el ingreso es pw;). Para una economia de intercambio (es decir,
cuando J =1y Y] = fRi) la definicién de qué constituye un equilibrio Walrasiano se puede reescribir
como: (z*,y*) y un vector de precios p = (py, ..., pr) constituyen un equilibrio Walrasiano si

() y*<0,p>0ypy*=0.

(i") zF € z; (p, pw;) para todo .

(i) D2 2f = >, wi +y”

Que las condiciones (ii’) y (iii’) son equivalentes a (ii) y (iii) es trivial, y no lo mostraremos. Ahora
mostraremos que (i’) es equivalente a (i).

Lema 10. y* € Y; es tal que py* > py para todo y € Y7 si y s6losi y* <0, py* =0y p>0.

Prueba. (<) Asumamos para comenzar que y* < 0, p > 0 y py* = 0. Debemos mostrar que y* € Y7 es
tal que py* > py para todo y € Y. Primero vemos que como y* < 0y Y] = —Ri, tenemos que y* € Y.
Segundo, como py* =0y py < 0 para todoy € Y1 (puesp >0,y ¥; = —RJLF) tenemos que py* > py para
todo y € Y7.

(=) Asumimos ahora que y* € Y] es tal que py* > py para todo y € Y7 y mostraremos que y* < 0,p >0
y py* = 0. Primero, como y* € Y; = fRi, tenemos que y* < 0. Segundo, p > 0, pues si para algin [, p; < 0,
tendriamos que para y = (y{, s Y Y = LY ,yZ) e,

P YT Yl — Lyl oY1) =0y — > py”
contradiciendo que py* > py para todo y € Y;. Tercero, vemos que

p=>0
Y <Oy Y = py<0,YyeY;

=py =0
0eY;
€ } = py* =0

py* > py,Vy € Y1

como querfamos demostrar. ll

Fl siguiente lema caracteriza las condiciones bajo las cuales un vector de precios es parte de un equilibrio
Walrasiano.

Lema 12. Suponga que para todo ¢ las preferencias =; son localmente no saciables, y que para todo p

y wi, T; (p,pw;) es una sola canasta (es decir, la canasta que maximiza la utilidad sujeta a la restriccién
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presupuestal es unica). Para una economia de intercambio p > 0 es parte de un equilibrio Walrasiano (existe
una asignacién (x*,y*) tal que [(z*,y*), p| es un equilibrio Walrasiano) si y sélo si,

Z (@i (p,pw;) —w;i) <0 (31)

i
Antes de pasar a la demostracién, notamos que en ningin caso hay que demostrar que p > 0. El lema dice
que p > 0 es parte de un equlibrio Walrasiano si y sélo si se cumple la ecuacién (31). No nos pide que

demostremos que p es tal que p > 0 y es parte de un equilibrio Walrasiano.

Prueba. (=) Demostraremos primero que si p es parte de un equilibrio Walrasiano, se cumple la ecuacién
(31). Sabemos entonces que existe una asignacion (z*, y*) tal que para [(z*, y*) , p] se cumplen las condiciones
(i"),(i") y (iii’). De la condicién (iii’) sabemos que >, (z; —w;) = y*, y de la (i"), que y* < 0, por lo que
> (xf —w;) < 0. A su vez, de la condicién (ii’) obtenemos la ecuacién (31).

(<) Asumamos ahora que (31) se cumple, y pongamos

y" Z (i (p, pwi) — wi)

i = x;(p,pwi).

Tenemos que (i’) se satisface pues; p > 0 (por hipdétesis); y* < 0 por definicién de y* y el hecho que (31) se
cumple; py* = 0 pues por ser las preferencias localmente no saciables, px; (p, pw;) — pw; = 0 para todo i, y
entonces

Py = pz (s (p,pwi) —wi) = Y (pz; (p,ps) — pwi) = 0.

(3

La condicién (ii’) se satisface por la forma como definimos z}, y la (iii’) por la forma como definimos

y*. A

Definimos ahora
2 (p) = ;i (p,pwi) —wi y 2(p) = Y _ 7 (p)
i

por lo que, si para todo i las preferencias =; son localmente no saciables, y para todo p, z (p) es una sola
canasta, para una economia de intercambio p > 0 es parte de un equilibrio Walrasiano si y sélo si, z (p) < 0.
Demostraremos ahora que existe un equilibrio Walrasiano, si z satisface ciertas condiciones.

Teorema 13. Asuma que para todo 4, z; (p) es una funcién de RZ — {0} en R* que es continua, homogénea
de grado 0 y que satisface la ley de Walras (es decir, pz; (p) = 0 para todo p). Entonces existe un p* tal que
Z(p*) =3, 2 (p*) <0,y por tanto la asignacién ({z; (p*) +wi}, Z (p)) y el vector de precios p* constituyen
un equilibrio Walrasiano.

Antes de pasar a la demostracién, vale la pena aclarar un par de puntos. Primero, el supuesto de
continuidad de z se puede deducir de la continuidad de las preferencias y su convexidad, por lo cual no es
un supuesto raro para hacer sobre z. Segundo, con no saciedad local, z satisface la ley de Walras, por lo cual
tampoco es raro asumir que z satisface dicha ley. Finalmente, una cosa mala de este teorema es que no se

aplica a una amplia gama de casos que estudiamos comunmente pues:

1) supone que z; es una funcién (es decir, no admite que para ciertos precios haya varias canastas que son
6ptimas y dejan al individuo indiferente). Esto se soluciona asumiendo que las preferencias son estrictamente
convexas (es decir, quesiy = wyz > wy o€ (0,1), entonces ax + (1 —a)y > w).
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2) supone que z; estd definida para todo p > 0. Es decir, asume que aunque haya algtn precio igual a 0, la
demanda de ese bien no serd infinita. Para una amplia gama de preferencias, eso no es asi. En particular,
eso no es cierto para el ejemplo que més usamos los economistas: la Cobb-Douglas.

Sin perjuicio de lo anterior, hay versiones més sofisticadas del teorema que no necesitan asumir ni que z

es una funcién, ni que estd definida para todo p > 0.
Continuamos con un ejercicio que serd util para entender la demostracion.
N _ (1 2
Ejercicio 14. Suponga que p = (3, 2)

Parte A. Dibuje un exceso de demanda Z (p) que cumpla la Ley de Walras, y demuestre que para el Z (p)
elegido se cumple la Ley de Walras.

Parte B. Para el Z (p) elegido, defina Z," (p) = max{0,Z; (p)} y Z* (p) = (Zf' (p) ;. Zf (p)) - Dibuje
Z* (p).

Parte C. Demuestre que si Z (p) ZT (p) = 0, eso quiere decir que Z (p) < 0. Higalo para todo p, y no sélo
para el p elegido.

Parte D. Demuestre que para
L
=S " m+Z
=1
la funcién f definida por
p+Z* (p)
o (p)

es tal que para cualquier p € A = {p ERL: > p = 1} se cumple que f (p) € A.

f(p) =

Parte E. Dibuje, para el p de la Parte A, f (p). Verifique que para los bienes en los cuales habia exceso de
demanda, se subié el precio relativo.

Un ultimo paso antes de la demostraciéon del Teorema 13, es presentar el enunciado del Teorema del
Punto Fijo de Brouwer.

Teorema de punto fijo de Brouwer. Sea S C R" para algiin n, un conjunto cerrado, acotado y convexo,
y sea f : S — S una funcién continua. Entonces f tiene un punto fijo, es decir, existe un s tal que f (s) = s.

Para ver que cada uno de los supuestos cumple algtin rol relevante vemos que si no pedimos que S sea

cerrado, f: (0,1) — (0,1) definida por

Flo) =3t

no tiene punto fijo. Si no pedimos que S sea acotado, tenemos que f : Ry — R definida por f (z) =z +1

tampoco tiene punto fijo. Si no requerimos que S sea convexo, vemos que f : {0,1} — {0,1} definida por
f(x) = 1 — z tampoco tiene punto fijo. Finalmente, si f es discontinua, tenemos que f : [0,1] — [0,1]

f(x){ ;o

definida por

N[ D=

0 x>
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tampoco tiene punto fijo.

Prueba del Teorema 13. Sea A = {p € R% : 3", p; = 1}, y definamos Z;" (p) = max {0, Z; (p)} y Z* (p) =
(Z ), Z] (p)) . Vemos que ZT (p) es continua y que Z (p) Z* (p) = 0 implica Z (p) < 0. Definimos

también
L

ap) =Y (m+7" (p)

=1

que es continua y mayor o igual que 1 para todo p. Nos definimos

_p+Z" ()

f(p) )

que también es continua y tal que f: A — A, donde A es cerrado, acotado y convexo. Por el teorema de
punto fijo de Brouwer, existe un p* € A tal que p* = f (p*). Por la ley de Walras, tenemos que

_Zt (pY)

P H+ZT ), .
B Z@)_<ﬂﬂ)

0=p"Z(p*)=f®)Z{®») o)

Z(p")
por lo que ZT (p*) Z (p*) = 0, y eso implica Z (p*) < 0, como querfamos demostrar. ll

Ejercicio 15 (23 en el repartido de Ejercicios). Definimos en X = Ri las siguientes funciones
de utilidad: wy (z) = min{zy, 2o} — (#1 —22)° y ug (x) = x1 + 22 — (21 — 22)°. Demuestre que para
w1 = wg = (1,1) y las utilidades u; y us la demanda z (p):

Parte A. Es una funcién de R? — {0} en R%.
Parte B. Es continua.
Parte C. Es homogénea de grado 0 y satisface la ley de Walras.

Ejercicio 16 (99 en el repartido de ejercicios). Suponga que w; = (2,0) y wa = (0,2). Asuma que
uy (211, 212) = T11 + /T12 ¥ U2 (T21, T22) = w21. Normalice el precio del bien 2 a 1.

Parte A. Encuentre el equilibrio competitivo de esta economfa.

Parte B. Suponga ahora que ug (z21, T22) = 29. si existe un equilibrio, encuéntrelo. Sino existe, demuestre
que para cada (p1,p2) # (0,0), la suma de las demandas no es igual a la suma de las dotaciones.

Ejercicio 17. Suponga que w; = (1,1) y wo = (1,1). Asuma que uj (x11,212) = min{z11, f (z12)}
para alguna funcién continua y creciente f; asuma que ug (T21,T22) = u1 (11, %12) = min{z11, f (z12)}.
Demuestre que existe un equilibrio en esta economia.

Ejercicio 95 Sean ua (z#) = 21 y up (%) = 2&. Las dotaciones son w® = (1,1) y w? = (0,1).

Parte A. Encuentre el, o los, equilibrios competitivos de esta economia. Si no hay equilibrio, argumente
por qué, y explique por qué falla el Teorema 13 de existencia (qué propiedad de la funcién z no se cumple
en este caso).

Parte B. Encuentre la asignacién Pareto Optima de esta economia.
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Ejercicios de Equilibrio General

Ejercicio 0. Dada una economia especificada por
i—1 i—1
({(Ri,u(x) =T + T2, w= (170))}221 ’ {Y = {y € R2 (Y2 < V _yl}};zl)
encuentre las asignaciones Pareto Optimas.

Ejercicio 1. Edgeworth con un tnico equilibrio. En esta economia hay dos agentes, el 1 y el 2. Las
utilidades y dotaciones estan dadas por u; = x1 + 2, us = x122, w1 = (1,0) y we = (0,1) . Encuentre todos
los equilibrios de esta economia. En particular, encuentre qué precios pueden ser de equilibrio, y para cada

precio de equilibrio, encuentre las canastas de consumo de los agentes.

Ejercicio 2. Edgeworth con multiples equilibrios. En esta economia hay dos agentes, el 1 y el 2. Las
utilidades y dotaciones estan dadas por u; = 21 + @a, us = o1 + 222, w1 = (1,0) y wy = (0,1). Encuentre
todos los equilibrios de esta economia. En particular, encuentre qué precios pueden ser de equilibrio, y para
cada precio de equilibrio, encuentre las canastas de consumo de los agentes.

Ejercicio 3. Robinson Crusoe. Hay una tnica persona en la economia: Robinson. La economia estd dada
por los siguientes datos. Hay dos bienes, tiempo libre y cocos. Robinson tiene una dotacién de (1,1) (una

unidad de tiempo y una de cocos), y su funcién de utilidad estd dada por
1
u(t,c) =c2

es decir, Robinson no valora su tiempo libre. Robinson también posee la tunica firma de la isla que transforma

tiempo libre en cocos, mediante la técnica “me trepo a la palmera y los bajo.” El conjunto de posibilidades

j

asf por ejemplo, si Robinson invierte 1 unidad de tiempo, podrd conseguir, como méximo, 12 = 1 coco.

de produccién de la firma estd dado por

W=

YE{(ft,c):cgt

Normalice el precio del tiempo a 1 y llame p al precio de los cocos.

Parte A. Para cada (1, p) determine cuanto trabajo demandara la firma y cudnto coco producira. Para ello,
resuelva el problema de maximizacién de beneficios.

Parte B. Determine a cuanto ascienden los beneficios de la firma cuando demanda la cantidad éptima de

trabajo.

Parte C. Determine cuanto tiempo trabajard Robinson (recuerde que no obtiene utilidad del ocio y que
cuanto més trabaja, mds cocos puede comer) y cudntos cocos demandard. (no olvide incluir los beneficios

de la firma en la restriccién presupuestal de Robinson).

Parte D. Determine el precio p de equilibrio y las cantidades de coco que produce la firma, y que consume
Robinson (no olvide que hay dotaciones iniciales).
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Ejercicio 96 Un individuo debe elegir qué porcién de su tiempo T asignar a laburar [, y cudnto a recreacién
r. Su funcién de utilidad por consumo del dinico bien z y recreacion es

u(e,r) =cr.

El individuo es dueno de la dnica firma de la economia que transforma trabajo en bien de consumo mediante
la funcién de produccién f (1) = al%, donde a es un pardmetro tecnolégico.
Normalice el precio del bien a 1, llame w al salario, y encuentre el equilibrio competitivo de esta economfa.

Ejercicio 4. La vaca inteligente. Una vaca posee 1 kilo de semilla de trigo y 1 kilo de hojas de la planta del
trigo. La vaca posee una firma que tiene una tecnologia de punta (llamada “planto la semilla y que crezca”)
para transformar semillas de trigo en hojas de trigo. Esta tecnologia le permite transformar z kilos de trigo
en x kilos de hojas de trigo. Las preferencias de la vaca por kilos de semillas s y kilos de hojas h estédn dadas
por u(s,h) = s2hz. Normalice el precio de las semillas a 1, llamele p al precio de las hojas.

Parte A. Encuentre la demanda de semillas de la firma s‘} (p) y la oferta de hojas de la firma h% (p) en

funcién de p (tenga ojo, no derive para maximizar los beneficios de la firma. Piense)
Parte B. Encuentre el consumo de semillas s¢ (p) y de hojas h? (p) de la vaca.

Parte C. Grafique la demanda total de semillas con p en el eje horizontal (no se asuste, deberfa ser creciente

en p). Grafique en el mismo par de ejes la oferta total se semillas.
Parte D. ;Cuil es el precio de equilibrio? ;Cudles son los valores de s2, s‘fc, hd h%?

Ejercicio 5. Robinson Crusoe y Viernes. En esta economia hay dos agentes, 1 y 2; dos bienes, Naranjas
n y Bananas b y un solo periodo de tiempo. No hay produccién, y las funciones de utilidad de los agentes
estdn dadas por

u; (n,b) =n'"parai=12y0<a<]1

La dotacién inicial del agente 1 es (1,0) (una naranja y ninguna banana) y la de 2 es (0, 1) (ninguna naranja

y una banana).

Parte A. Normalice el precio de las naranjas a 1, llamele p al precio de las bananas y encuentre el equilibrio
competitivo de esta economia.

Parte B. ;Qué sucede con p cuando aumenta «? ;Porqué?

Ejercicio 6. Robinson Crusoe y Viernes otra vez. FEn esta economia hay dos agentes, R y V; dos bienes,
Naranjas n y Bananas b y un sélo perfodo de tiempo. No hay produccién, y las funciones de utilidad de los
agentes estdn dadas por

abl—a

ugr (n,b) =n y uy (n,b) = max {n,b}

La dotacién inicial de R es (1,0) (una naranja y ninguna banana) y la de V es (0, 1) (ninguna naranja y una

banana).

Parte A. Normalice el precio de las naranjas a 1, llamele p al precio de las bananas y encuentre las demandas
de ambos bienes para ambos agentes. Encuentre también la demanda agregada de bananas (es decir, para
cada nivel de precios, cudl es la cantidad total demandada). Grafique con p en el eje de las abcisas la

demanda agregada de bananas para a = %, y la oferta de bananas.
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Parte B ;Hay un equilibrio en esta economia? Si lo hay, especifique el precio p, y las cantidades consumidas
de ambos bienes, por ambos agentes.

Parte C Si la respuesta en la Parte B fue que no habia un equilibrio, ;cudl o cudles de las siguientes hipétesis
que aseguran la existencia de equilibrio no estédn presentes?

(i) zi (p), el exceso de demanda del bien 4, para i = b, n, es una funcion.

(ii) Si z; (p) no es una funcién jHay alguna forma de, quitandole cantidades demandadas para algunos precios,
hacer que sea una funcién continua?

(iii) Si z; (p) no es una funcién ;Hay alguna forma de, quitdndole cantidades demandadas para algunos
precios, hacer que z; (p) sea un nimero real para todo p > 07 (en particular, jqué pasa en este caso si

p=07)

Ejercicio 7. Un modelo de generaciones superpuestas. Este ejercicio ilustra como puede surgir asignacién
ineficiente en una economia con horizonte infinito. Por supuesto, no cumple con los supuestos del Primer
Teorema del Bienestar.

Los periodos de tiempo son ¢t = 0,1,2,... En cada periodo t = 1,2, ... hay un joven y un viejo, que fue
joven el periodo pasado. En el periodo 0 hay un viejo, que no se especifica de donde vino. Las dotaciones
para cada individuo son de una unidad del tinico bien de la economia en cada periodo. Siendo j; el consumo
del joven en el periodo t y v; el consumo del viejo en el periodo ¢, la funcién de utilidad del individuo que es

joven en t es
- _ o, l—a
Ut (Je, Vep1) = Js Vigr -
Para el viejo en el periodo 0, lo tinico que nos interesa, es que su utilidad es creciente en su consumo, pero
para simplificar, asumamos que su utilidad de consumir vy es vg.

Parte A. Dados los precios (pg, p1, P2, -..) plantee el problema de maximizacién del individuo que es joven
en el perfodo t y encuentre sus demandas éptimas y la del viejo del periodo 0.

Parte B. Normalice pyp = 1 y encuentre todos los precios de equilibrio. Usando el equilibrio en el mercado

l1—«

= )t para todo t < T y demuestre usando

de bienes para el periodo 1 encuentre p;. Luego asuma que p; = (

la condicién de equilibrio en el mercado de bienes en el periodo ¢, que pr = (1_7“)

Dado el resultado de la Parte B, vemos que para todo t,

. «
Jo = — @i +p)=1
Dt
—«
V41 = (pt +pe41) =1
Pt+1

como era obvio: en el periodo 0, el viejo se come su dotacion, y los precios son tales el joven quiere comerse
también 1. Por lo tanto, el viejo en el periodo 1 debe comerse su dotacion, y asi sucesivamente. Con esta
asignacion, la utilidad de las personas en equilibrio es 1.

Parte C. Muestre que si a < %, esta asignacién no es Pareto Optima, pues la asignacién

(w0, 1,22, ...) = (vo, (Jo,v1), (j1,v2),...) = 2(1 — ), (20,2(1 — ), ...)
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es alcanzable y la Pareto Domina.

. Qué es lo que pasa en este equilibrio, que no es Pareto Optimo? Para empezar, lo que sucede es que
como « < %, eso quiere decir que a los individuos les gusta mds consumir cuando son viejos que cuando son
jo6venes, pero en equilibrio deben consumir lo mismo en ambos periodos. El problema es que no hay forma
de “transferir” recursos de un periodo al siguiente.

Una segunda forma de ver el problema, es tratando de entender porqué falla el Primer Teorema del
Bienestar. El modelo de generaciones superpuestas es una economia que entra dentro del modelo de equlibrio
general. En esta economia hay infinitos agentes (uno por cada nimero natural) y otros tantos bienes (con
la interpretacion siendo que trigo hoy es un bien distinto a trigo mafiana), y una sola firma, cuyo conjunto
de posibilidades de produccién es {(0,0,0,...)} (es decir, no puede transformar ningin bien en ningin otro
bien). El espacio de consumo de cada consumidor es R x R x R.... La dotacién inicial de la economia es

(2,2,2,...) y la del joven del periodo ¢ es

0,0,..0,1,1,0,0, ...
N——

t—1

La estructura de propiedad de las firmas no importa, pues los beneficios son siempre 0, pero para ser correctos,
ponemos que la firma pertenece, por ejemplo, al viejo del periodo 0. Formalmente, si el viejo en el periodo ¢
es el agente ¢, tenemos que 0y =1y 6; = 0 para todo ¢t > 0.

Ahora vemos que si a < %, pr — 00, y la demostracion del primer teorema del bienestar falla, pues varias

de las sumatorias divergen.

Parte D. Encontrar el paso exacto en el cual falla la demostracién del primer teorema del bienestar con la

economia de generaciones superpuestas.

Ejercicio 8. Considere la siguiente economia. Hay un agente por cada niimero natural, o lo que es lo mismo,
I =N, y hay dos bienes: bananas y naranjas (las bananas son el bien 1 y las naranjas el bien 2). El precio
de las bananas es normalizado a 1 y llamamos p al de las naranjas. Cada agente posee una dotacién de una

banana y una naranja, y la funcién de utilidad de cada agente es
u (b,n) = b*n'.
Parte A. Encuentre un equilibrio competitivo de esta economia. Sea cuidadoso con la notacién.

Parte B. ;Es la asignacién que encontré Pareto Optima? (Demuestre su respuesta) ;Se aplica el Primer
Teorema del Bienestar que vimos en clase a esta economia? (Justifique). Si la asignacién no es Pareto
Optima, ;dénde falla la demostracién?

Ejercicio 9. Hay un individuo y una firma. El bien 1 son semillas de trigo, y el 2 es tiempo libre. La
dotacién inicial es (1,1) . La firma produce semillas de trigo s a partir de semillas de trigo y trabajo ¢ con la
tecnologfa dada por

f(s,t)= 4577,
Las preferencias del individuo por semillas y trabajo estan definidas en el conjunto X = Ry X [0, 1] (puede
consumir cualquier cantidad positiva de semillas, pero sélo puede trabajar entre 0 y 1 unidades de tiempo,

piense que el tiempo esta medido en “vidas”) y vienen dadas por

[SIE

u(s,t) =s? (1—t)
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Parte A. Demuestre que si (1,w) son los precios de equilibrio (normalizando el precio de las semillas a 1
y llamandole w al salario) y (s*, —t*) es el vector de “produccién” de la firma (tiene una produccién neta
de s* semillas usando t* de trabajo) entonces los beneficios de la firma son 0 (pista: tienen que ser mayores
o iguales que 0 porque siempre puede producir 0 demandando 0 de ambos insumos, por lo que restaria
demostrar que no pueden ser estrictamente mayores que 0. Para demostrar eso, note que la tecnologia de la
firma tiene retornos constantes a escala y use eso para demostrar que si fueran > 0, la oferta de la firma en
equilibrio serfa infinita).

Parte B. Encuentre la forma de producir x unidades de semillas que minimiza el costo para cada vector de
precios (1, w).

Parte C. Usando las partes A y B muestre que en equilibrio w > 4 y que si w > 4, entonces la firma no

produce nada.

Parte D. Usando la Parte A, encuentre la canasta de consumo 6ptima del individuo para cada vector de
precios (1, w).

Parte E. Usando la demanda de semillas del individuo, demuestre que la firma tiene que producir una
cantidad positiva de semilla en equilibrio (argumente que si no lo hiciera, se obtendria w = 1, que llevaria a
una contradiccién con la Parte C).

Parte F. Usando las Partes E y C encuentre los precios y la asignacién de equilibrio.

Ejercicio 10. En esta economia hay dos agentes, el 1 y el 2. Las utilidades y dotaciones estdn dadas por

11
U = TiTs
12
Uy = T;x3
W1 = W2 = (1, 1)

Parte A. Encuentre las funciones de exceso de demanda de ambos individuos. ;Si u; fuera x1 + x2, habria

una funcién de exceso de demanda? Explique.

Parte B. ;Se puede aplicar el teorema de existencia de equilibrio visto en clase y las notas? Verifique cada
una de las hip6tesis (;Se satisface la ley de Walras? ;Estdn los excesos de demanda definidos para todo
p > 07 etc, ete).

Parte C. Encuentre el o los equilibrios de esta economia.

Ejercicio 11. En esta economia hay dos agentes, el 1 y el 2. Las utilidades y dotaciones estdn dadas por

{1 sixy+ax9>1

U = .
0 en caso contrario
11
Uy = TiT5
wp = w2= (17 1)

Parte A. Verifique que
[x17$27p} =[(1,1),(1,1),(1,1)]
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es un equilibrio competitivo de esta economfia.

1

Parte B. La asignacién [z!,2%] = [(1,1), (1,1)], ses Pareto Optima? Sino lo es, ;cusl asignacién la domina?

Parte C. Si la asignacion de la Parte B no es Pareto Optima, ;jporqué falla el Primer Teorema del Bienestar?

Parte D. Demuestre que no hay ningin equilibrio que sea Pareto Optimo (pista: encuentre la tnica
asignacion Pareto Optima que le da una utilidad de 1 al individuo 1 y demuestre que no es un equilib-
rio para ningun vector de precios (1,p), y haga lo mismo para la tnica asignacién Pareto Optima que le da
una utilidad de 0 al individuo 1)

Ejercicio 12. Sean wy = w2 = (1,1) y

1 1
ui (z1) = xf28

1 1
_ 3.3
uz (z2) = T35 +n

de tal forma que el individuo 2 disfruta del consumo de que tenga 1 del bien 1 (por ejemplo, podria ser que
el bien 1 es “musica” o “plantas de jardin”). Esto es lo que se llama una “externalidad”.

Parte A. Encuentre el inico equilibrio de esta economia.
Parte B. Muestre que el equilibrio no es Pareto Optimo. Explique porqué.

Ejercicio 13. Sean

Vi = {(y,y2) 9 <vV-u}
Vo = {22 <1—9i}.

Hay dos individuos en la economia, el individuo ¢ es propietario de la firma ¢. Las dotaciones iniciales son
w1 = ws = (1, 1), y las utilidades

Encuentre el o los equilibrios de esta economia. Si queda una ecuacién de tercer grado en p, demuestre que
existe un precio de equilibrio p € (1,2).

Ejercicio 14. Hay dos economias, con un consumidor, una firma y dos bienes cada una. Para

= oaiemy eyt >y
= sramye ey’ > yly 0

las economias vienen dadas por

By = ({X,=},Y,{(w,0)})
= ({R27 1} { —Y1, y2 S R2 “Y2 < JTZH} 7{((171)71)})
By = ({Ri =} {(-y.1p) € Ry 1y < V=ur} {((1,1),1)})

Parte A. Calcule las utilidades de cada agente en el dnico equilibrio en cada economia (calcule sélo una,

pues la otra es cambiar « por ).
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Parte B. Considere ahora la economia dada por la unién de ambas economias (dos bienes, dos agentes, dos
firmas, cada agente es dueno de una firma). Suponga « = % = 2/3. Muestre que en el equilibrio en esta nueva
economia las utilidades de equilibrio son mayores que las que tenfan en los equilibrios cuando las economias

estaban en autarquia (eran economias separadas).

Parte C. ;Se le ocurre algiin razonamiento general que demuestre que esto es siempre asi? Es decir,
demuestre (en palabras) que dadas dos economias separadas, si se abren al libre comercio, estardn mejor que

en autarquia.

Ejercicio 15. Sea X = R?, y sean u; y uy funciones de utilidad para los individuos 1 y 2. Sean
wit = (1,3),ws = (1,1), 07 = (3,1),w5 = (1,1)

las dotaciones de los individuos 1 y 2 en las economias A y B respectivamente. Es decir, las economias A y
B vienen dadas por
i=2 i=2
EA:{(Xauiasz)}l y EB:{(XauiawiB)}l

=1 i=1"

Los siguientes tres gréficos presentan las cajas de Edgeworth, con sus dotaciones, para tres pares distintos

de precios
A A A
Xo Xo X2
G 4
A A A

A
A
A

Parte A. En la hoja proporcionada con los dibujos, para cada economia i = A, B, dibuje el conjunto C; de
asignaciones que cumplen la restriccién presupuestal para ambos individuos y son alcanzables.

Parte B. Indique cuél o cudles de los paneles podrian representar pares de precios de equilibrio. Es decir,
en cada panel, indique si el par de precios p4 v pp podrian ser los precios de equilibrio en las economias
Ay B respectivamente. En los paneles en los cuales los precios podrian ser de equilibrio, dibuje en la hoja
una asignacién que podria ser de equilibrio para cada economia. Pista: para determinar si los pares de
precios son de equilibrio o no, intente encontrar, o muestre que no hay, una asignacién en C'4 y otra en Cp
que cumplan con el Axioma Débil de la Preferencia Revelada para el individuo 1 (si 24 es elegido en A y
xp en B, debemos tener que ppra < pprp implica paxp > para y similarmente, pazp < paza implica

PBTA > PBTR)
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Ejercicio 16. Considere una economia con dos agentes, dos bienes, y sin produccién. Las dotaciones son
w1 =wsg = (1,1) y las utilidades uq (z1,22) = 1 y ue (z1,x2) = z1 + 2.

Parte A. Encuentre el conjunto de asignaciones Débilmente Pareto Optimas y dibijelas en una caja de
Edgeworth.

Parte B. Encuentre el o los equilibrios para la dotacién dada.

Parte C. Encuentre todas las asignaciones que pueden ser parte de un equilibrio competitivo, suponiendo
que las dotaciones pueden cambiar de tal forma que la dotacién total de cada bien es 2. ;Cudles asignaciones

Pareto Optimas no pueden ser de equilibrio? ;Porqué?

Ejercicio 16°’. Considere una economia con dos agentes, dos bienes, y sin produccién. Las dotaciones son

wy =wq = (1,1) y las utilidades uy (21, 22) = 21 vy uz2 (21, 22) = z1 + X2.
Parte A. Encuentre el conjunto de asignaciones Pareto Optimas y dibijelas en una caja de Edgeworth.
Parte B. Encuentre el o los equilibrios para la dotacién dada.

Parte C. Encuentre todas las asignaciones que pueden ser parte de un equilibrio competitivo, suponiendo
que las dotaciones pueden cambiar de tal forma que la dotacién total de cada bien es 2. jAlguna asignacién
Pareto Optima no pueden ser de equilibrio?

Ejercicio 17. Considere una economia con dos agentes, dos bienes, y sin produccién. Las dotaciones son

F
w1 = (1,0) y wy = (0,1) y las utilidades uy (v1,22) = x723 v ug (v1,12) = x¢zy

Parte A. Calcule el equilibrio competitivo como funcién de a.

Parte B. Asuma que o = %. Si un gobernante quiere maximizar la suma de las utilidades, jqué asignacién
elegird?

Parte C. Encuentre una transferencia de dotaciones entre los individuos tal que el equilibrio competitivo
con esas dotaciones sea la asignacién de la Parte B.

Parte D. La solucién (més sencilla) de la Parte B implica transferencias de ambos individuos entre si.
Encuentre una transferencia de dotaciones del individuo 1 al 2, o del 2 al 1, tal que el equilibrio competitivo
con esas nuevas dotaciones sea el de la Parte B. Pista: encuentre cudles deben ser los precios de equilibrio
en la Parte B, y transfiera dotaciones desde el que le sobra plata (para comprar la canasta de la Parte B,

con las dotaciones iniciales) al que le falta.

Ejercicio 18. Considere una economia con dos agentes, dos bienes, y sin produccién. Las dotaciones son
1 1
w1 = (1,0) y wa = (0,1) y las utilidades u; (z1,22) = x?x3 y uz (x1,22) = x1 + bxe para b >0

Parte A. Calcule el equilibrio competitivo como funcién de b.
Parte B. Si un gobernante quiere maximizar la suma de las utilidades, ;qué asignacion elegird?

Parte C. Encuentre una transferencia de dotaciones entre los individuos tal que el equilibrio competitivo

con esas dotaciones sea la asignacién de la Parte B.
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Parte D. La solucién (més sencilla) de la Parte B implica transferencias de ambos individuos entre si.
Encuentre una transferencia de dotaciones del individuo 1 al 2, o del 2 al 1, tal que el equilibrio competitivo
con esas nuevas dotaciones sea el de la Parte B. Pista: encuentre cudles deben ser los precios de equilibrio
en la Parte B, y transfiera dotaciones desde el que le sobra plata (para comprar la canasta de la Parte B,
con las dotaciones iniciales) al que le falta.

Ejercicio 19. Considere una economia con dos agentes, dos bienes, y sin produccién. Las dotaciones son
1 1

w1 = (1,0) y wy = (0,1) y las utilidades uy (x1,22) = 2723 v ug (v1,12) = x¢wy @

Parte A. Calcule el equilibrio competitivo como funcién de a.
Parte B. Si un gobernante quiere maximizar la suma de las utilidades, ;qué asignacion elegira?

Parte C. Encuentre una transferencia de dotaciones entre los individuos tal que el equilibrio competitivo
con esas dotaciones sea la asignacién de la Parte B.

Parte D. La solucién (més sencilla) de la Parte B implica transferencias de ambos individuos entre si.
Encuentre una transferencia de dotaciones del individuo 1 al 2, o del 2 al 1, tal que el equilibrio competitivo
con esas nuevas dotaciones sea el de la Parte B. Pista: encuentre cudles deben ser los precios de equilibrio
en la Parte B, y transfiera dotaciones desde el que le sobra plata (para comprar la canasta de la Parte B,

con las dotaciones iniciales) al que le falta.

Ejercicio 20 (de Kreps). Considere una economia con dos agentes, tres bienes, y dos firmas. El agente 1
es dueno de la firma 1, que transforma el bien 1 en 3 de acuerdo a la tecnologia y3 < 3y, y el agente 2 de
la firma 2, que transforma el bien 1 en 2 de acuerdo a la tecnologia ys < 4y;. Cada consumidor posee como
dotacién 5 unidades del bien 1. Las utilidades son

2logx3 + 3log x2

up () =6+ 5

ug () = 8 + log z3 + log 2
Parte A. Normalice p; = 1 y encuentre el equilibrio de esta economia.

Parte B. Encuentre el equilibrio de esta economfa si revertimos la estructura de propiedad. Vale lo mismo
hacer las cuentas otra vez, que dar un argumento bien elaborado “en palabras”.

Parte C. Encuentre las asignaciones Pareto Optimas de esta economia.

Ejercicio 21. En una economia hay 2 bienes, un individuo, y una firma. La dotacién inicial es w = (1,1),

la tecnologia de la firma es
V={yeR’:y <0y <v-u}

y la funcién de utilidad del individuo es u (x) = 122.
Parte A. Encuentre el dnico equilibrio competitivo de esta economfa.

Parte B. Asuma que la economia se abre al comercio internacional y que enfrenta unos precios (1,p) en
el mercado internacional, a los cuales la firma puede comprar y vender todo lo que desee, y el individuo
puede comprar todo lo que desee. En la jerga de economia internacional, es una economia pequena y
abierta. Encuentre el unico equilibrio de esta economia. En este caso el equilibrio es la asignacién (z,y)
correspondiente al individuo y a la firma, a los precios dados internacionalmente.
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Parte C. Muestre que la utilidad del individuo es mayor en la Parte B que en la Parte A.

Ejercicio 22. En una economia hay 2 bienes, y n + 1 individuos, y una firma. La dotacién inicial de cada

individuo es w = (d,0), la tecnologia de la firma es
Y={yeR*:y1 <0yp<-u}

y las funciones de utilidad de los individuos son u; () = us (z) = ... = uy, () = x122 Y Uny1 () = 21.
Parte A. Encuentre el dnico equilibrio competitivo de esta economfa.
Parte B. Encuentre cémo varfan los precios y la asignacién de equilibrio cuando cambian n y d.

Ejercicio 23. En una economia hay 2 bienes, dos individuos y una firma. La tecnologia de la firma es
Y = {(0,0)}. La dotacién inicial de cada individuo i es w; = (1,1), y las preferencias son uy () = z1x2 y
usg () = 0, para todo z.

Parte A. Encuentre todos los equilibrios competitivos de esta economia.

Parte B. Para cada equilibrio de la Parte A determine si es Pareto Optimo o no (en cada caso demuestre
su respuesta).

Parte C. Si encontré algtn equilibrio que no es Pareto Optimo, explique por qué falla el Primer Teorema

del Bienestar.
Parte D. Encuentre las asignaciones Pareto Optimas de esta economia.

Ejercicio 24. Definimos en X = R? las siguientes funciones de utilidad: u; (z) = min {z1, 22} — (21 — 22)?
y ug () =21 + 22 — (21 — xz)z. Demuestre que para w; = we = (1,1) y las utilidades u; y us la demanda
z (p):

Parte A. Es una funcién de R? — {0} en R%.
Parte B. Es continua.
Parte C. Es homogénea de grado 0 y satisface la ley de Walras.

Ejercicio 25. En este ejercicio se demostrard que atn si el individuo puede saciarse (las preferencias
no son localmente no saciables) los equilibrios son Pareto Optimos. Suponga que cada X; es no vacio y
convexo. Unas preferencias =; en X; son estrictamente convexas si #’ =; z y 2’ # z implican que
ax’ + (1 — o)z >; z para todo o € (0,1).

Parte A. Demuestre que si las preferencias son estrictamente convexas, para cada ¢ existe a lo sumo un z;

que sacia al individuo (xf »=; z; para todo z; € X;).

Parte B. Demuestre que si no existe un z{ que sacia al individuo y las preferencias son estrictamente

convexas, entonces las preferencias son localmente no saciables.

Parte C. Demuestre que si atin si existe un z§ que sacia al individuo, si las preferencias son estrictamente

convexas, ~; es localmente no saciable en z;, para todo z; # x.
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Parte D. Demuestre que si las preferencias son estrictamente convexas y z es 6ptimo para ~; en la
restriccién presupuestal px < K y zf* >=; x7 entonces sélo hay dos opciones: o ] =z o pzi* > K.

Parte E. Demuestre que si las preferencias son estrictamente convexas todo equilibrio competitivo es Pareto

Optimo (si hace la Parte F, ignore esta parte, y serd tomada como correcta).

Parte F. Demuestre que si las preferencias son estrictamente convexas todo equilibrio con transferencias es

Pareto Optimo.

Ejercicio 26. En una economfa hay dos individuos, una firma, y dos bienes: trigo (bien 1) y bananas. El
individuo 1 tiene una dotacién inicial de w; = (1,1), una utilidad u (1) = xlélxléz. El individuo 2 es el
dueno de la firma, tiene una dotacién de wy = (0,0) y sélo consume bananas: us (z2) = x22. La firma tiene
una tecnologia dada por {y eER?:y1 < /12 } (come bananas para producir trigo, por lo que y2 < 0).

Parte A. Encuentre las demandas del individuo 1.

Parte B. Sabiendo la demanda del individuo 1, 211 (p) = a + bp (verifique que la demanda encontrada en

la Parte A tiene esta forma), y que

l—a+—
%11:1Jr\/fyz¢>a+bp:1Jr\/—yz«t>p:Ty2

la firma elige y2 para maximizar beneficios
l—a++/—y2
VY2 +py2 = v-Yy2+ (f) Y2

Encuentre la cantidad de trigo producida y las bananas demandadas por la firma. Calcule también los

beneficios de la firma.
Parte C. Encuentre la demanda del individuo 2.

Parte D. Encuentre el precio de equilibrio (el que hace oferta igual demanda). Es m4s fécil en el mercado

1, pero por supuesto da igual en los dos mercados.

Parte E. Plantee el problema que debe resolver para encontrar la tnica asignacién Pareto Optima de esta
economia en la cual el individuo 2 tiene una utilidad de

17V7-10
18 247

Parte F. Muestre que la derivada de

[SIE

1 77— 10 ’
1+ AU (U
18 247

evaluada en
142447
2 (2+3V7)
es distinta de cero (en particular, es negativa). Argumente que eso quiere decir que la asignacién de equilibrio

no es Pareto Optima.
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Parte G. Esta es la tnica pregunta relevante del examen. Piensen. ;por qué no es Pareto Optima la
asignacién de equilibrio?

Parte H. Resuelva el problema de la Parte E.

Ejercicio 27. Sea X; = Ri, Y = —RJLF (no hay produccién) y sea =; una relacién de preferencias que es
localmente no saciable.

Parte A. Demuestre que si z* = x para todo z tal que px < K, y ™ = x*, entonces px*™* > K.

Parte B. Demuestre que si z; (p, pw;) es la demanda Walrasiana del individuo 4, con preferencias localmente

no saciables, entonces x; (p, pw;) cumple la Ley de Walras: px; (p, pw;) = pw;.

Parte C. Demuestre que si z; (p, pw;) es la demanda Walrasiana del individuo %, con preferencias localmente
no saciables, y que si

I I
Z zij (p,pwi) = sz‘j
i=1 i=1

para todo j # k y algtin p > 0 (p; > 0 para todo [ = 1,2, ..., L) entonces

I I
Z Tik (Ps pw;) = Z Wik,
i=1 i=1

por lo que p es un precio de equilibrio (Pista: utilice la Parte B).

Ejercicio 28. En una economia hay dos bienes, dos individuos y dos firmas. Las dotaciones son w1 = (a,0)
y wa = (1 —a,0), las utilidades u; (z) = z1 y uz (x) = x2. El individuo ¢ es propietario de la firma ¢, con
Vi={yeR?*:yp<—yrcony <0} yYo={yeR?:y1 <0yya<=u1}.

Parte A. Encuentre las ofertas de las dos firmas.
Parte B. Encuentre las demandas de los individuos.

Parte C. Normalice el precio del bien 1 a 1, y argumente que p > 1 no puede ser parte de un equilibrio.
Encuentre el equilibrio competitivo de esta economia como funcién de a (Pista: discuta segin p. Para p
pequenos, la firma 1 estard inactiva, encuentre el equilibrio, y muestre que a > 3/4. Luego estudie el caso
p=1ya<3/4).

Ejercicio 29. En una economia hay dos bienes, dos individuos y dos firmas. Las dotaciones son wy = (1,0)
12
y wa = (1,0), las utilidades u; (z) = z122 ¥ u2 (x) = xf x5 . El individuo ¢ es propietario de la firma 4, con
1 1
le{yER2:y2§4(—y1)4 con ¥, SO}ng:{yeRQ:y1§0yy2§8(—y1)4}.

Parte A. Encuentre las ofertas de las dos firmas.
Parte B. Encuentre las demandas de los individuos.
Parte C. Normalice el precio del bien 1 a 1, y encuentre el equilibrio de esta economia.

Ejercicio 30. In the economy

(((R2 0 (@) = wrmmo = (LODT Y = {y € R s < 20711001
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the individual is the owner of the firm. Normalize the price of good 1 to 1 and call p the price of good 2.
Part A. Find the supply of the firm, and its profits.

Part B. Find the demand of the individual.

Part C. Find the competitive equilibrium price p and the allocation.

Ejercicio 31: Equilibrio competitivo con gobierno. Una economia tiene 2 bienes, un consumidor y

una firma. Las preferencias del consumidor vienen dadas por la funcién de utilidad

x%—ol x%—o‘g

u(xy,z2) = o " T_og
La firma tiene conjunto de posibilidades de produccién Y = {(yl, yo) ERZ iy < (—yg)ﬁ} con 3 € (0,1).
La dotacién de la economia es @ = wy = (0,1)

Parte A. Normalizando el precio del bien 1 a 1, encuentre el equilibrio competitivo de esta economia

Suponga ahora que se introduce un gobierno. Este tiene que financiar un gasto exégeno en los dos bienes,
que denotaremos G y Ga por 3 vias: impuestos ad valorem al bien 1, impuestos ad valorem al bien 2, ambos
cobrados al consumidor, e impuestos de suma fija T" € R. Estos impuestos pueden llegar a ser negativos, si
es que se recaudo mas en los dos primeros impuestos que lo que debia gastarse. Tanto G, G2 como las tasas
impositivas sobre los bienes 1 y 2, 71 y 72 son exdgenas: por lo tanto, lo tinico que puede hacer el gobierno
es elegir un nivel de impuestos de suma fija (o transferencias si son negativos) T' € R para que se satisfaga
la restriccién presupuestal del gobierno:

G +pGy = T121 + Topxa + T <= T = G +pGay — 7171 — T2pTo

Un equilibrio competitivo con gobierno serd una asignacién ((«7,x3), (yf,y3)), un vector de precios (1,p*)

y un nivel de impuesto de suma fija T* € R tales que:
1. El consumidor optimiza en el conjunto {(z1,x2) € R? : (14 71) 1 + (1 4 72) p*z2 < (1 +p*) — T}
2. Las firma optimiza dado el precio p*
3. Se cumple consistencia agregada (oferta igual a demanda en ambos mercados)
4. T* satisface T* = G + p*Gay — 112} — Top* 75

Parte B. Suponga g = % yop =02 = % Encuentre el equilibrio competitvo con gobierno de esta economfa.

SiGy =Gy = % yT1 =Ty = 1—10, encuentre explicitamente dicho equilibrio

Parte C (dificil). Considere una economia cualquiera en el formato general visto en clase, con L bienes,
I consumidores y J firmas. Considere un gobierno que debe financiar gastos en cada bien {Gl}if con
impuestos ad valorem {Tl}ézlL dados, y un nivel de impuesto de suma fija para cada consumidor 7, de la
forma {Tz}zj tales que se cumple la restriccién presupuestal del gobierno. En base a lo visto en la parte

anterior, proponga una definiciéon para un equilibrio general con gobierno para esta economia.
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Ejercicio 97 Una economia pequena y abierta. Una economia tiene un solo agente, una sola firma y
dos bienes: un bien de consumo (C) y ocio (0). Las preferencias del agente vienen dadas por la funcién de
utilidad

w(e,)=c*(1-0)""

con ¢ el bien de consumo, ! € [0,1] el trabajo, que es 0 = 1 —1, y @ € (0,1). La firma tiene tecnologia
dada por la funcién de produccién f(I) = kl” con k > 0y 8 € (0,1). La dotacién de la economia es
w=w; = (g,0) =(0,1).

Parte A. Encuentre el equilibrio competitivo de esta economia.
Parte B. Suponga § = %, k=1lya= % Encuentre el equilibrio walrasiano en este caso

Parte C. En el caso de la Parte B, suponga que ahora la economia se abre al mercado internacional: en
el los salarios y los precios del bien de consumo son (p,w) = (4,2). Una economia pequena y abierta se
caracteriza por tomar como dados los precios internacionales, y puede exportar e importar tanto como quiera
sin afectar los precios. Tomando los precios como dados, encuentre la demanda y oferta de trabajo por parte
del agente, y la oferta de bien C' y demanda de trabajo por parte de la firma. ;Cumple esta asignacién con

el requerimiento de “oferta=demanda”? (Sugerencia: no normalice)

Parte D. Encuentre el balance comercial de la economia, tanto en el bien C' como en el trabajo (Sugerencia:

encuentre los excesos de demanda en ambos mercados)

Parte E. (Dificil) En una economia cualquiera, como las vistas en clase, proponga una definicién de
equilibrio competitivo en una economfa pequenia y abierta. (Sugerencia: La definicién debe tomar como
dato del problema el vector de precios internacionales, p'™! € Ri. Hay alguna de las 3 condiciones de la
definicién clédsica que sea redundante en este contexto? )

Ejercicio 33. Hay dos cazadores en un bosque, A y B, los cuales intentan cazar el unico venado disponible.
Con probabilidad A € [0, 1] el venado es cazado por el cazador A, mientras que con probabilidad 1 — X es
cazado por el segundo cazador. El venado tiene 1 unidad de carne, y las utilidades de cada uno de los
cazadores por unidad de carne es:

ua (¢) =In(c) = up (¢
Con ¢ € (0,1) Hay por lo tanto, dos bienes en la economia: la carne de venado cuando es cazada por el cazador
A (que denotaremos por c4) y la carne de venado cuando es cazada por el cazador B, que denotaremos cp.

Antes de salir a cazar, los individuos se comprometen a una manera en la que repartiran la carne.

Parte A. Suponga que las preferencias de los individuos sobre loterias satisfacen el teorema de utilidad
esperada. Encuentre la utilidad esperada de cada uno de los agentes. Estas seran de la forma Ua (ca,cp) y

UB (CA,CB).

Parte B. Suponga que establecen una economia de intercambio, en el que ambos bienes, c4 y cg. ;Cuales

son las dotaciones w4 y wp € Ri en esta economia?

Parte C. Encuentre el equilibrio competitivo de esta economia. Investigue que sucede si a = % e interprete.

Ejercicio 34 (basado en Reny). Tome una economia de las mas generales que se vieron en clase, de la

forma:
i=1 j=J
E= {{Xi7 iiawi}zzl ’ {Y]}jzl }
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tales que X; C Ri, Y; C R’ y las preferencias >=; definidas sobre X, racionales y localmente no saciables.
Suponga que la estructura de la economia es tal que, para toda asignacién de dotaciones {wz}ij posibles,
siempre existe un equilibrio walrasiano para dicha economia. Un equilibrio walrasiano (z*,y*, p) provoca
*

*. Un equilibrio walrasiano es libre de envidia

envidia si existen consumidores i, j € I tales que z7 »; @
si nunca provoca envidia, esto es, para todo i,j € I,z} 2; zj . Suponga que existe un gobierno que puede
hacer lo siguiente: antes de que la economia "comience", puede redistribuir las dotaciones iniciales: esto es,
. . . L , . . . .,
dada una asignacion de dotaciones iniciales de la economfa {w;}:_; puede cambiarla por otra asignacién de

. o e . . . ~ =1 I ~
dotaciones iniciales, que llamaremos una reasignacion {&;}._,, tal que > ; w; = > @.

Parte A. Pruebe que, en este tipo de economia, siempre existe por lo menos una reasignacién tal que el
. . . . 7. . . . . ~ =1 ~ —
equilibrio que genera es libre de envidia (Sugerencia: Considere la reasignacion {w;};—_; tal que @; =w =
1Y, L
72awi €RY)

Parte B. Suponga que L = I = 2. Una economia de intercambio con preferencias de los dos agentes (A y B
respectivamente) dadas por

ua (z1,22) =

Moo N~

|
8 8
= Hol=
8

8

up (T1,22) =

Las dotaciones son wy = (1,2) y wa = (2,1). Encuentre una reasignacién que genera un equilibrio walrasiano
libre de envidia, y encuentre dicho equilibrio walrasiano.

Ejercicio 35. Una economia con garantias: una economia tiene un consumidor y una firma. Existen 2
bienes fisicos en esta economia: un bien de consumo c¢ y ocio. El bien de consumo puede tener fallas y no
poder consumirse: especificamente, con probabilidad « € [0, 1] el bien se rompe y no puede consumirse. En
esta economia, la firma puede vender el bien de consumo ¢ en dos modalidades: puede venderlo con garantia
total o sin garantia total: es decir, si el consumidor compra c, unidades del bien de consumo con garantia,
y se rompe, la firma le d4 nuevamente la cantidad c,: es decir, el consumidor termina consumiendo seguro
cg. Si compra ¢, unidades del bien de consumo sin garantia, con probabilidad 1 — « lo consume, pero con
probabilidad « termina sin poder consumirlo. Por lo tanto, en esta economia hay tres bienes: el bien de
consumo con garantia c,, el bien de consumo sin garantia cs y el trabajo L (tomado como 1 — o, siendo o el
ocio). La dotacién de la economia es (¢4, cs, L) = (0,0, 1). Normalizaremos el precio del bien con garantias
a 1; asi cualquier vector de precios es de la forma p = (1,p, w) con p el precio relativo del bien sin garantia
respecto del bien con garantia, y w el salario en términos del bien con garantias.

El problema de la firma. La firma utiliza como insumo trabajo (L) para producir bienes de consumo con
garantia (y,) y sin garantia (ys). El conjunto de produccién viene dada por la funcién de produccién
f (L) =k&L con k > 0. Supondremos que, por la ley de los grandes niimeros, una proporcién « de los bienes
producidos con garantias deberdn ser fabricados nuevamente: explicitamente, el problema que debe resolver
la firma es el de elegir y,,ys y L para maximizar

Yg +pys —wl
sujeto a: (1 + @) yy +ys < KL

Parte A. Suponiendo que en equilibrio deben producirse cantidades positivas de ambos bienes, encuen-
tre cual debe ser el precio p de equilibrio para que la firma produzca ambos con probabilidad positiva.
(Sugerencia: defina la variable y, = (1 4+ a) y, y plantee el problema de la firma eligiendo (v, ys, L) )
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Parte B. Pruebe que, en equilibrio, debemos tener que el salario de equilibrio debe ser w* = 7
(Sugerencia: investigue los rendimientos a escala de la funcién de produccién, y utilice lo visto en la

parte anterior)

El problema del consumidor. Suponga que el consumidor tiene preferencias sobre el bien de consumo dadas

por la funcién de utilidad u (c) = ¢, y que no tiene desutilidad por trabajar.

Parte C. Suponiendo que se cumplen los supuestos del teorema de Von Neuman - Morgenstern, encuentre
la funcién de utilidad U (¢q, ¢5)

Parte D. Argumente, en no mas de 5 lineas, porque el problema a resolver por el consumidor es el de elegir

¢g v ¢ para maximizar U (cg, ¢;) sujeto a cq + pes < w.

Parte E. Resuelva el problema del consumidor, encontrando las funciones de demanda ¢, (p, w) y ¢s (p, w).
1 Que restriccién debe cumplir el precio relativo p para que elija consumir cantidades positivas de ambos
bienes? ;Cual es la intuicién detréds de este resultado?

Parte F. FEquilibrio Competitivo. Defina y encuentre el equilibrio competitivo para esta economia. Analice
como cambian las cantidades de equilibrio cuando cambia la probabilidad «. ;Encuentra estos resultados

sensatos? Comente la intuicién de estos resultados

Ejercicio 36. En una economia hay dos agentes: el agente activo (A) y el agente pasivo (B) y tres bienes:
trigo (t), galletas (g) y ocio (0). La dotacién del agente activo es (¢, g,0) = (0,0, 1), mientras que la dotacién
del agente pasivo es (t,g,0) = (1,1,0). Es decir, el agente acitvo solo tiene trabajo para ofrecer, pero ningun
bien para consumir, mientras que el agente pasivo no puede trabajar, pero si tiene bienes de consumo. La
funcién de utilidad del agente activo es u4 (t,g,1) = t3g3 (1 — l)% con [ la cantidad de trabajo ofrecido por
el agente. La utilidad del agente pasivo es up (t,g) = % In (t) + % In (g). Por otra parte, existe una firma que
toma como insumos trabajo (1) y trigo (¢) para fabricar galletas (g). La funcién de produccién de la firma es
ft)=vt+ V1. La firma es total propiedad del agente pasivo (P) . Normalizamos el precio de las galletas

a 1, el precio del trigo a p y el salario a w.

Parte A. Problema de la Firma. Plantee el problema de la firma, y encuentre las demandas de insumo
o6ptimas, asi como la produccién optima dependiendo de los precios.

Parte B. Encuentre los beneficios de equilibrio de la firma, dependiendo de los precios de equilibrio

Parte C. Problema de los consumidores. Plantee el problema del agente A, y encuentre las demandas
optimas de trigo y galletas, y la oferta de trabajo, dependiendo de los precios p y w.

Parte D. Plantee el problema del agente P, y encuentre las demandas 6ptimas de trigo y galletas, depen-

diendo de los precios p y w. (Nota: Recuerde la estructura de propiedad de la firma)
Parte E. Fquilibrio Competitivo. Encuentre el equilibrio competitivo de esta economfa.

Exercise 4. There are two agents with utilities and endowments given by

1 1
U = Tixs
1oz
Uy = TP
w1 = w2= (17 1)
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(there is no production, or equivalently, there is one firm, but the production possibility set of firm 1 is
vi = {0}).

Part A (20 points). Find the demand function of each individual (for a given price vector (p1,p2), the
bundle that maximizes his utility, subject to the bundle costing less than his income, in this case, the value
of his endowment).

As is standard, the demand for a Cobb Douglas z{x3~®, when income is I is given by 2, = al/p; and
29 = (1 —a)I/ps. Since I = p; + pa, we get for individual 1,

P1+Dp2 p1+Dp2
1 =—— and x9 = ———
2p 2ps
and for individual 2,
P11+ D2 _ oD1+D2
] =———= and xy =2—=

3p1 3p2
Exercise 4. Part B (20 points). Find the competitive equlibrium of this economy.
Letting superscripts denote individuals, we must have x1 +2% = 2 (the total endowment of the economy),
so that
PLtp2  pLtpe

+ =2 —z
21 31 = ]92—5;01-

Any p, is part of an equilibrium, so long as py = % p1. So one standard thing to do is to normalize p; = 1 and let
P2 = % Another standard thing to do is to normalize the sum of both prices to be 1 : p; + %pl =lep = 1—52
and py = 1—72

We used the first market to find the price, but we could have used the constraint that 23 + 23 = 2 to

obtain the same result
p1+p2 I

2p2 3py "5

Ejercicio. Considere una economia con dos agentes y dos bienes. Las preferencias de los individuos vienen

dadas por

u(z,y) = alogz+ (1 —a)logy con 0 < a < 1

siendo las dotaciones inciales de wy = (a,0) € R2 y wy = (0,a) € R? respectivamente con a > 0.

Parte a.- (10 puntos) Determine el precio de equilibrio competitivo de esta economia, y las consiguientes
asignaciones de equilibrio.

Parte b.- (10 puntos) Con los datos ya indicados, suponga que un planificador central obliga al individuo
dos a ceder ¢ unidades de bien dos al individuo uno, con 0 < § < a

La asignacion resultante, jes un 6ptimo de Pareto? Justifique. Si su respuesta es negativa, ;cudnto bien
uno deberd estar obligado a ceder el individuo uno al individuo dos para que la asignacién final resultante
sea un 6ptimo de Pareto?

Ejercicio 98 El individuo 1 tiene una funcién de utilidad w(x1) = 211212 y el individuo 2, v (z1,22) =

Z21 + T2 — x11. Las dotaciones iniciales son wy = we = (1,1). No hay produccién.

Parte A. Encuentre el equilibrio competitivo de esta economia.
Parte B. Encuentre las asignaciones Pareto Optimas. . Es la asignacién de equilibrio Pareto Optima?
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Parte C. Suponga que el gobierno pone un impuesto de ¢ por unidad al bien 1, y devuelve lo recaudado
como una suma fija T" a cada individuo, de tal forma que las restricciones presupuestales son ahora

Ta1 (P1 +1) + Ta2D2 = waip1 +Waap2 + T
xp1 (1 +1) +xp2p2 = weip1 +weepe + T

V Ta1t + xpit = 2T. Asuma que los individuos, al maximizar, no saben que la transferencia depende de
cuénto consumen (al momento de maximizar sélo agregan a su restriccién presupuestal una suma 7). ;Hay
algiin ¢ que resulte en una asignacién que Pareto domine al equilibrio de la parte A7

**repetir anterior con la utilidad de 2 cobb douglas también.**

**si no da, repetir con un impuesto solo al individuo 1**

Ejercicio 99 Suponga que wy = (2,0) y wa = (0,2). Asuma que uy (211, %12) = T11++/ZT12 ¥ U2 (T21, T22) =
91. Normalice el precio del bien 2 a 1.

Parte A. Encuentre el equilibrio competitivo de esta economfa.
Parte B. Suponga ahora que us (21, Z22) = x22. Si existe un equilibrio, encuéntrelo. Si no existe, demuestre
que para cada (p1,p2) # (0,0), la suma de las demandas no es igual a la suma de las dotaciones.

Ejercicio 100 Equilibrio General. Dificil. Considere una economia de intercambio con 2 consumidores
y 2 bienes. Sea x;; > 0 el consumo del agente i del bien k. FEl agente 1 tiene una dotacién inicial de
(2,0) y el agente 2 tiene una dotacién inicial de (0,1). Las preferencias del agente i son representadas por
wi (241, Tio, Tj1) = Ti1%io — v(xj1 — x4 ), para ¢ = 1,2, i # j, donde v’ > 0,0” >0y v(0) = 0.

Parte A. (i) Caracterice las asignaciones Pareto eficientes, (ii) Explique el significado de cualquier condicién
de primer orden que obtenga, y (iii) Indique cual es una asignaciéon que cumpla estas caracteristicas, es decir,
una asignacién que sea Pareto eficiente.

Para lo que resta de este ejercicio concéntrense exclusivamente en el caso especial: u;(zi1, Ti2, xj1) =
T — 3(zj1 — z0)>
Parte B. Asumiendo que los dos commodities son intercambiados en mercados competitivos, caracterice
las decisiones éptimas de consumo del individuo ¢, dado el consumo ;1 para j # i.
Parte C. Asumiendo que los dos agentes se comportan como en la Parte B (eligiendo canastas tomando los
precios como dados, y el consumo del otro individuo como dado), caracterice un equilibrio competitivo en
donde cada agente elige su vector de consumo éptimo sujeto a su restriccién presupuestaria dado el consumo
del otro consumidor.
Parte D. ;Es un equilibrio competitivo Pareto eficiente en este caso?

**Por solucién ver ExamenEcoMat2011.pdf en esta carpeta™*

Ejercicio 101 Considere una economia de intercambio con 2 consumidores y 2 bienes. Sea x;; el consumo
del agente i del bien k. Las dotaciones de ambos agentes son w; = we = (1,1). Las preferencias del agente
1 son representadas por ui (11, 12) = T11Z12, ¥ las del 2 por us (xo1, Te2) = 1.

Parte A. Calcule el o los equilibrios competitivos de esta economia.

Parte B. Determine si los equilibrios son Pareto Optimos.

Parte C. Si alguno de los equilibrios no es Pareto Optimo, explique por qué falla el Primer Teorema del
Bienestar.

140



Ejercicio 102 En una economia hay dos bienes, dos individuos y dos firmas. Las dotaciones son w; =
(1 —-a,0)y was = (a,0), las utilidades son u; (x) = 1 y ua () = x2. El individuo i es propietario de la firma
i,conle{yeRZ:ygg—yl, cony1§0}yY2:{y€R2:y2§ —Y1, cony1§0}.

Parte A. Encuentre las ofertas de las dos firmas.

Parte B. Encuentre las demandas de los individuos.

Parte C. Normalice el precio del bien 1 a 1 y argumente que p > 1 no puede ser parte de un equilibrio.
Encuentre el equilibrio competitivo de esta economia como funcién de a. (Pista: discuta segin p. Para p
pequenos la firma 1 estard inactiva, encuentre el equilibrio y muestre que a debe ser menor que algin valor

v. Luego estudie el caso para p =1 y demds valores de a).

Ejercicio 103 Considere una economia de intercambio en la que hay dos consumidores y dos bienes. Las
funciones de utilidad y dotaciones son uj (x) = x3z2, us (r) = 2172, w1 = (15,3) y wa = (5,17).

Parte A. Argumente que se cumple la ley de Walras para cada individuo: si la demanda del individuo 4
dados los precios p e ingresos pw; es z; (p,pw;), se cumple pz; (p, pw;) = pw;. Pueden utilizar resultados
demostrados en clase o en ejercicios.
Parte B. Calcule el equilibrio competitivo de esta economia.
Parte C. Encuentre todas las asignaciones Pareto Optimas.
Parte D. Si las dotaciones fueran w; = (z,3) y wa = (20 — 2,17) para algin z, {la asignacién (xy,z5) =
((10, 2—3?) , (107 4—3?)) podria ser parte de un equilibrio competitivo? ;si pudiera ser, cudl seria el z que daria
esa asignacién como equilibrio competitivo? ;Cudles serian los precios?

**no usado el que viene**

Ejercicio 104 Hay dos agentes que tienen la misma dotaciéon de los dos bienes que hay en la economia,
w1 = we = (1,1). El individuo 1 tiene una funcién de utilidad dada por u (z1) = 211775, mientras que el
agente 2 tiene una funcién de utilidad ug (z2) = 23;722.

Parte A. Encuentre el equilibrio competitivo de esta economfa.
Parte B. La asignacién de equilibrio, ;es Pareto Optima?
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Soluciones

Ejercicio 95.A. Si alguno de los dos precios es 0, la demanda por ese bien es infinita (si es p1, el individuo 1
demandaré infinito de ese bien; si es po, el individuo 2 demandars infinito de ese bien). Si los dos precios son
distintos de 0, el individuo 1 demandard O del bien 2, y el individuo 2 demandars 1 del bien 2 : el mercado
por ese bien no puede satisfacer oferta igual demanda. El problema es que el exceso de demanda no es un
nimero real, para todo p # (0,0) (en particular, si uno de los precios es 0, la demanda es infinita, y se viola
que z; (p) es una funcién de R2 — {0} en R?).

Ejercicio 95.B. La tnica asignacién Pareto Optima es 2% = (1,0) y 2 = (0,2) . Para hacerlo formalmente,

tenemos que para cada T, elegimos z y ¥ para maximizar

Como z sélo aparece en la tercera restriccién, y z4' no afecta ni las restricciones ni la funcién objetivo,
ponemos ¥ = 2. En este problema, cualquier combinacién 4! + 2P = 1 con 2{* > % es una solucién. Vemos
entonces que la tnica asignacién Pareto Optima es con ¥ = 2, y 7 lo mds grande posible, @ = 1, y 24! = 1.

Ejercicio 0. Si una asignacién es Pareto Optima en esta economia con un solo agente, maximiza la utilidad

del individuo sujeta a la restriccién de recursos. Por lo tanto, resuelve el problema de elegir z1,z2 para

maximizar
1+ o
sujetoax; = 1+
2 = Y2
y2 < —Y1.

Tenemos entonces que xo2 = /—y1 v ©1 = 1 + 41, por lo que debemos maximizar 1 + y; + /—y1, lo que
arroja y; = —%. Para graficarlo, vemos que el problema es el de maximizar x1 + =2 sujeto a x5 < /1 — x7.

Ejercicio 1 Normalizo p; = 1 y pongo ps = p. Si p < 1, 31 = p~' > 1 = W, no puede ser. Si p > 1,
x11 = 1 = W1, lo cual no dejaria nada para el individuo 2, que siempre demanda algo del bien 1 :

zp =1L
2= 5
Por lo tanto, el unico equilibrio debe ser con p = 1. Para p = 1, la unica asignacién de equilibrio es

(11
v =m = (3.3).

Hacerlo también: encontrando las demandas de ambos individuos para ambos bienes, y con las curvas de
oferta.

Ejercicio 2 Deducimos, igual que en el Ej. 1, que p < 1 no puede ser, y que p > 2 no puede ser. Para
cualquier precio p € [1,2], z; = w; es la Unica asignacién de equilibrio.

Ejercicio 3. (i) La firma debe elegir ¢ para maximizar
1
pt2 —t
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Obtenemos ¢ (p) = & y ¢* (p) = §.

(ii) Los beneficios son 7 (p) = p — %2 = %,

(]S}

(iii) Robinson ofrecera siempre una unidad de tiempo en el mercado de trabajo y demandard todos los cocos
que le permita adquirir su ingreso (el valor de su dotacién inicial més los beneficios de la firma). El ingreso

de Robinson es )
7T(p)+1+p:%+1+p

por tanto su demanda sers ¢ (p) = & + % +1.
Igualando la demanda ¢ (p) a la oferta total de cocos (la dotacién inicial de 1 mas c* (p)) obtenemos
1
P14 240
4 p 2
Noten que si en vez de usar el mercado de bienes para encontrar p, hubiésemos usado el de trabajo (tiempo

total ofrecido igual a tiempo total demandado), también hubiese dado p = 2.

Ejercicio 96. Los beneficios de la firma son el resultado de elegir [ para maximizar alz — wl, que arroja
%li% :wﬁl(w):iﬁj—z y
la 1 a? 1 a?
) =0y T T T

Luego, el individuo debe elegir ¢ y r para maximizar cr sujeto a ¢ + wr = wT + 7 (w), que por la férmula

(c,r) = (1%) % <wT+ i“g) .

En el equilibrio tenemos [ +r =T, y eso sucede si y sélo si

de la demanda Cobb-Douglas es

2 T4 ld
G e L

4 w? 2w 2T

El equilibrio es entonces con precios (1,w) y asignacién

o= [(2) o+ 12). (2 42)] - (om0 (ovmed)

Ejercicio 4. La funcién de oferta de hojas de la firma es igual a su demanda de semillas

0 sip<l1
h$ (p) = S?‘ (p) =< cualquier cosa entre 0 e co sip=1
o0 sip>1
Las demandas de la vaca son L+ 1+
p d p
Zl (p) 2—p y sy (P) 9
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Demandas
St Sy

0.5 Oferta

v

Igualando oferta y demanda de semillas encontramos
su(p) +sf(p)=1ep=1

Ejercicio 94.A. Para cada u del individuo 2, debemos elegir x1, xo para maximizar 122 sujetoa (1 —x1) (1 — z2) =
u, que da como resultado xo =1 — (17—“001) y como funcién objetivo x (1 — (17—“001)) . La condicién de primer

orden es
22 —2r—u+1

(@ —1)*
Eso da como resultado 23 = 1 — %= = 1 — \/u y una utilidad de u; = (1 — Vau)?.

:0<:>£L‘1:1—\/ﬂ.

94.B. Las demandas en este caso son 1 = (%, 2—1p> y To = (%, %) , por lo que el precio de equilibrio resuelve
% + 2 =14 p=1,y las asignaciones son x; = x3 = (i, i) .

94.C. La demanda del individuo 2 es (z1,z2) = (%, 2—’;) = (%, %) Supongamos que el individuo 1 decide

1 1

ofrecer sélo % de su unidad del bien 1. En ese caso su demanda serd (z1,z2) = (%, —225) = (i, fp) . Luego,
el p de equilibrio es aquél para el cual % + ﬁ =l&ep= % (en el otro mercado, £ + i = 1. que también da
p= %) El individuo 1 que se consume su % unidad tendrd una canasta de (%,0) + (i, 4—1p> = (%, %) , que
arroja una utilidad de %. El individuo 2 tendrd una canasta de (%, %) , v una utilidad de %.

Cuando ponemos u = % en la Parte A, la utilidad de 1 serfa en una asignacién eficiente u; = (1 — \/ﬂ)2 =
0.41 que es mayor que %. Por supuesto, la asignacién en este equilibrio no es eficiente, pero es mayor que %
que seria lo que le tocaria en el equilibrio competitivo.

Ejercicio 7.A. Para cada jovenen t = 0,1, 2, ... el problema de maximizacién dados los precios (po, p1,p2, -..)

es el de elegir (j;,vs41) para maximizar

o, 1—a
Jt Vit

sujeto a pjs + Pir1Vi+1 < P+ Pyt

La solucién a este problema es

. «
Jt = — (Pt +pes1)
bt
1l—«
Vgy1 = (Pt + Dey1) -
DPt+1

Para el viejo en el periodo 0, su ingreso es pg, y se gastard todo su ingreso en consumo del bien, por lo que

su demanda del bien es 1.
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7.B. ara que los precios (pg, p1, D2, -..) sean de equilibrio, debemos tener que oferta igual demanda en todos
los periodos. Como la oferta es 2 en todos los periodos, tenemos que

t=0 2=1+j0©1=%(p0+p1)@p1=1?7ap0

. _ an2
t=1 2=v1+j1 = 1p1a (po +p1) + 5= (p1 + p2) < P2 = Po (&=2)

El primer paso (demostrar que se cumple para algin t) ya lo hicimos, pues mostramos que p; = 1TT‘X Ahora
asumimos que es cierto para t < T y lo demostramos para 7. Tenemos que

. 11—« a
2 = wry+jro1 = o (pr—2 +pr—1) + P (pr—1+0p1) &

- () ) ) () )
S (1 aa>T

como queriamos demostrar.

7.C. La asignacién de equilibrio les da a todos una utilidad de 1, mientras que la asignacién propuesta arroja
-«

una utilidad de 2 (1 — «) > 1 para el viejo, y 2a® (1 — «) > 1 para todos los demads.

Ejercicio 8.A. Las demandas de los individuos son

! a(l+p)

- 11—«
e = —— (1+p
5 ’ (1+p)

Un equilibrio posible es aquél en el cual a(1+p) = 1, es decir, cada individuo se come su dotacién, que
arroja un precio de
1—«
p= .

Q

El equilibrio es entonces (p, z) == ((1,p), [z, 2%, ...]) = ((1,p),[(1,1),(1,1),...]).

8.B. La asignacion no es Pareto Optima pues el segundo individuo podria darle toda su dotacién al individuo
1, el tercero toda su dotacién al segundo, y asf sucesivamente. FEn ese caso el primero estarfa estrictamente
mejor, y todos los demds iguales. El Primer Teorema del Bienestar no se aplica pues supusimos una cantidad
finita de agentes. La demostracién vista en clase falla pues cuando las sumatorias dan infinito, no se puede

decir que una sea mayor que la otra.

Ejercicio 9.B. Hay que elegir s,¢ para minimizar s + wt sujeto a 4s7t2 = z, lo que arroja s = w\i@ v
t= 17

9.C. Supongamos que en equilibrio la firma maximiza beneficios produciendo x unidades de semilla. Eso
quiere decir que, una vez elegido el nivel de producto z, la firma minimiza el costo de producir z. El beneficio
de producir z es entonces

1 N 1 o 2

y eso es menor o igual que 0 si y solo si w > 4.

() () -2 orm ()
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9.D. Elegir s y t para maximizar s% (1- t)% sujeto a s = wt + 1. Sustituyendo por s y derivando e igualando

a 0 obtenemos t = =1 5 = Wil

w ?

9.E. Si la firma no produce nada, entonces debemos tener que la demanda del individuo es 1 (para que haya

equilibrio). Si la demanda es 1, w = 1, lo que llevaria a una contradiccién con C.

9.F. Como la firma debe producir una cantidad positiva de semilla, debemos tener w = 4, lo que nos dice
que la canasta del individuo es (s,t) = (g, %), por lo que la firma debe producir, en términos netos, %
utilizando t = % (todo cierra pues si la firma quiere producir en terminos netos %, en forma 6ptima, debe
producir 3, y usar % de insumos de s y t = %. Una cosa que no cierra, pero no importa, de esto, es que la
firma esta demandando como insumos mas de lo que hay en la economia. Pero digo que no importa porque
podemos pensarlo en terminos del conjunto de posibilidades de produccion, o en su defecto pensar que la

firma demanda 1 de s, produce més de 1, luego demanda lo que produjo, y asf llegamos a producir 3).

Ejercicio 10.A. Normalizando el precio del bien 1 a 1 y llamando p al precio de 2 tenemos que las demandas
son

s = (FEE)

2 2p
1+p 2+2p
2 (p) = (Tv3—p>

por lo que tenemos que los excesos de demanda son

-1 1+
z1(p) = (pT,Tppl)

p—2 2+4+2p
z = — 3 - 1
2 (p) ( 3 —3p
Si uj fuera x1 4+ x2, no habria una funcién de demanda, pues cuando p = 1, cualquier canasta es 6ptima, y

la demanda es una correspondencia (a un precio le corresponden muchas canastas).

10.B. No se puede aplicar el teorema. La hipétesis que no se cumple, es que z; (p) esté definida para todo
p > 0. En particular, cuando el precio del bien 2 es 0, las demandas son infinitas. Es facil verificar que se
cumple la ley de Walras.

10.C. Para encontrar el equilibrio de esta economifa, hacemos que p sea tal que la suma de los excesos de
demanda del bien 1 sea 0: p = %

Ejercicio 11.A Para el individuo 1, z* = (1,1) maximiza su utilidad dentro de la restriccién presupuestal
dado p = (1,1) (de hecho, maximiza su utilidad dada cualquier restriccién presupuestal). Para el individuo
2, las demandas para un vector de precios (1, p) son

1+0p
W) =— v M) =7

que dado que los precios son (1, 1) arroja 22 = x3 = 1, por lo que 2% = (1, 1) maximiza la utilidad de 2 dentro
de la restriccién presupuestal dada por los precios (1,1). Como la suma de las cantidades demandadas es

igual a la suma de las dotaciones:

ot a? = (1,1) 4+ (1,1) = w! +w?
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[xl,:cz,p] =[(1,1),(1,1),(1,1)] es un equilibrio.

11.B. La asignacion [wl, xz] =[(1,1),(1,1)] no es Pareto Optima pues la asignacién

- [2)-(4)

L'~ 2! (pues las dos asignaciones le dan una utilidad de 1) y 22 =5 22 (pues la utilidad de Z?

la domina: x
es 3 yladez?es1).

11.C. El PTB falla porque las preferencias de 1 no son localmente no saciables. Hay dos formas de verlo.
La primera, es que sabemos que si son LNS, entonces el individuo, para cada restriccién presupuestal, si
maximiza utilidad, gasta todo su ingreso. Para precios p = (1,1), la canasta ' = (%, %) maximiza la
utilidad, pero no gasta todo el ingreso. Por lo tanto, las preferencias no pueden ser LNS.

Otra forma es verificar directamente que las preferencias no son LNS: para z! = (1, 1) y cualquier £ > 0,
no existe ningin =’ tal que ||:c1 - sc’H <eya =1 2 pues 2! da la maxima utilidad que puede obtener el

individuo.

11.D. Si (551,552) es Pareto Optima y le da una utilidad de 1 a 1, tiene que ser tal que Z1 4+ 23 = 1 (de lo
contrario podrfamos darle un poco de los bienes de 1 a 2 y 2 mejoraria estrictamente sin perjudicar a 1).

Por lo tanto, debemos elegir 71, 7L, 72 v 22 para maximizar
; 123,25 Y X3

=

5242
(27%3)
sujeto a 7] +75 = 1
422 = (2,2).
Usando la primera restriccién, la segunda nos queda
~ ~ POEPN usando Z14z2=2
(l‘%,l—l‘%) + (CL’%,ZL‘%) = (272) <:% !
1-(2-2)+23 = 2&
7 = 3-13

Por lo tanto el problema se reduce a elegir 73 para maximizar

(3-32) %)

N

y la solucidn es

o 3 5 3 4 4 1
De las funciones de demanda encontradas en la Parte A, sabemos que
2 3 1+p 3
2 2
= —- & = = — =2
T 5 21 (p) B B p
y también, si p = 2,
1+4p 3 ,3
200y 22

Es decir, no hay ningin precio que haga que la asignacién

- (1))
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sea parte de un equilibrio. Otra forma de ver que no es un equilibrio es notando que (%, %) estd siempre
fuera de la restriccién presupuestal de 2.

Procediendo de la misma forma que antes, la tnica asignacién Pareto Optima que le da una utilidad de 0
al individuo 1 es aquella que tiene i = T3 = 0 y no hay ningiin p que que haga que en equilibrio el individuo

consuma T} = T3 = 0, pues la canasta 2! = (1, 1) siempre estd disponible, y le da una utilidad de 1.

Ejercicio 12.A. Como el individuo 2 no puede elegir x11, el equilibrio se calcula como siempre, y da

(xlax%p) = ((17 1) ) (17 1) ) (17 1)) .

12.B. Elegiremos la asignaciéon que maximiza la utilidad de 1 dejando a 2 con una utilidad de 2 (que es lo
que tiene en equilibrio): elegir x11, 12,21, T22 € R4 para maximizar

1 1

e
sujeto a x%x% +zr11 = 2 (32)
Z11 + T21 2 (33)
T12 + T22 2 (34)

Usando las restricciones (33) y (34) en la (32), obtenemos que el problema es el de elegir 11,212 € [0, 2]
para maximizar

L1
2 2
Li1Ti2

=

sujeto a (2 —x11)2 (2 — xlg)% +z11 = 2T =211

(z11 v 212 deben ser menores a 2 para que o1 ¥ Too sean positivas). Por lo tanto el problema se reduce a
elegir 211 € [0,2] para maximizar x17. La solucién es

=2= =0
$11:2:>{ T12 T22
1’21:0

por lo que la utilidad de 1 es 2 y la de 2 es 2. Como la utilidad de 1 en equilibrio es 1, el equilibrio no es
Pareto Optimo.

La razon es que 1 compra bien 1 sélo pensando en su utilidad personal, pero “deberia” comprar maés
porque su consumo de bien 1 hace feliz a 2.

Ejercicio 13. La firma 1 debe elegir y; para maximizar p/—y1 + y1, lo que arroja

La firma 2 debe elegir y; para maximizar y; + p (1 — y%) , lo que arroja

*

1. 4pr—1
N =55Y2 =

1+ 4p?
2p 4p? '

4p

) T2 (p) =

Las demandas de los individuos son, por la férmula de la Cobb-Douglas con los beneficios incluidos,

. 444p+p* ,  A44p+p?
L1 = -5 75321:78;0
. dp+8p*+1 ,  4p+8pP+1
iz = T’%Z:T'
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El equilibrio se da entonces cuando

11+ 212 = 24y +tye &
444 2 4 241 2 1
tdptp” ApASp7 1l o, p L
8 12p 4  2p
9p3 +28p> —28p—10 = 0

Como en p = 1 la expresién es —1, y en p = 2 es 118, existe un p € (1,2) que es de equilibrio.

Ejercicio 14.A. La firma debe elegir y para maximizar 1, + pys sujeto a ys = \/—y1, lo que arroja

el individuo maximiza su utilidad eligiendo

c)= (w40 ) 0mo H2EE).

El precio de equilibrio es entonces aquél para el cual

2 2
17
1p—a<1+p+pz)¢>p2 a

4 1+«

La utilidad de los individuos en equilibrio se obtiene sustituyendo p en z (p) y = (p) en las funciones de

utilidad. Para a = % yB= % las utilidades son

o) 2 8 4 32
E _ 6 _ (16 8 __ 8%/250
2p*5ix*(573)i“2* 25

2 2
1 _ 2N (PP Ly — 22 (p) = 22
y (p) = y(p)< 4,2) y 7 (p)=7" (p) 1
2
1 p?\ 114+p+5
1 o - I - 4
@ (p) = (2(1+p+4),2 5
2
1 p2\ 314p+E
2 _ - 1 1 2 4
z= (p) <4<+p+4),4 )

por lo que el p de equilibrio es aquél para el cual

2 2 2
p* 1 P 1 P _10
2 2—2<1+p+4)+4(1+p+ )@p

Las canastas y utilidades son por tanto

. (10) 3 (128 64) 644110
X = => Uy =

11 121° 55 605
353
2 (10 _ (64 96 ¢u2:32“4/§11434\%
11 1217 55 605
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14.C. Supongamos que contrariamente a lo que queremos demostrar, uno de los dos individuos se encuentra
peor luego de la apertura, y supongamos sin pérdida de generalidad que es el individuo 2 el que empeora.
Sean

22 la canasta consumida por el individuo 2 en autarquia
yg la canasta producida por la firma 2 en autarquia
y? la canasta producida por la firma 2 en libre comercio

p; el vector de precios de equilibrio en libre comercio

2

Argumentaremos ahora que x%

siempre estd disponible para el consumidor en el equilibrio de libre comercio,
¥ que por tanto 2 tiene que mejorar. Para hacerlo, alcanza con demostrar que el costo a precios p; de z2 es

menor que pw + py?, el ingreso total de 2 en la situacién de libre comercio. Como se cumplen

12 =

pt w +y2 por ser la condicién de oferta igual demanda en autarquia

my2 < py? pues las firmas maximizan beneficios en libre comercio

tenemos que
2 _ 2\ _ 2 2
pxg =p (w+y;) = pw +py; < pw + pyj

como queriamos demostrar.
No tiene nada que ver con las ventajas comparativas. En este caso las tecnologias son idénticas, por lo

que ningin pafs tiene una ventaja comparativa.

Ejercicio 15.A. En los dibujos de abajo, estdn marcados los conjuntos C4 y Cp en cada panel. El primer
panel no puede ser nunca de equilibrio pues para cualquier cosa que esté en C4 y cualquier cosa que esté
en Cp, se viola el Axioma Débil de la Preferencia Revelada. En el segundo y tercer panel se presentan las
asignaciones 4 y xp que podrian surgir en un equilibrio. De la figura es fécil ver que el Axioma Débil se
cumple para el individuo 1 en ambos casos. Es necesario verificar con un poco més de cuidado que el Axioma
Débil también se cumple para el individuo 2 : hay que ver que cuando la linea de precios de B pasa por la

dotacién en A, no queden ambas canastas demandadas (por 2) por debajo de las dos lineas de presupuesto.

A A A
X2 X2 X2
G D ummmm— e— <«
Xa XA
Ca
Ca Ca X X
N ° N
< < <
CB CB CB
X4 v X1 4 X:
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Ejercicio 16.A. Para encontrar las asignaciones Débilmente Pareto Optimas, debemos elegir, para cada
nivel de utilidad u del agente 2, las asignaciones que maximizan la utilidad de 1, sujeto a que 2 obtenga al

menos u. Elegir £17 y 12 para maximizar

Z11

sujetoa 2 —x11+2—212 > u

Si u < 2, las asignaciones que resuelven este problema relevantes son aquellas en las cuales 2 consume u
0 més de zo y 1 consume 2 de z; y la parte de xo que no consumié 2. Mateméticamente, las siguientes

asignaciones son DPO:
{[(z11,12) , (21, 22)] : @11 = 2,221 = 0,2 > 99 > U, T12 = 2 — a2, u < 2}. (35)

Si u > 2, el individuo 2 consume todo del bien 2, y lo que le falta hasta llegar a v del bien 1. Formalmente,

las asignaciones que resuelven el problema para u > 2 son
{[(w11,m12) , (w21, 22)] s 211 =4 —u, 21 = v — 2,722 = 2,212 = 0,4 > u > 2}. (36)

El conjunto de asignaciones DPO es la unién de (35) y (36). Gréficamente, son los bordes Sur y Este de la
caja de Edgeworth.

16.B. Normalizamos el precio del bien 1 a 1 y llamamos p al del bien 2. Si p > 1, el individuo 2 demandaré
14+ p>2=uwi1 +ws del bien 1, por lo que p < 1. Si p < 1, el individuo 2 demanda

1+
Tp>2=w12+w22

del bien 2. Concluimos entonces p = 1. En ese caso, x11 = 2 y x99 = 2. El equilibrio es entonces

[(z1,22) ,p] = [((2,0),(0,2)), (1, 1)] .

16.C. Las asignaciones en (35) no pueden ser de equilibrio y las de (36), si (hay una asignacién en (35) que
también estd en (36) y que puede ser de equilibrio). Para cada asignacién (z1,z2) en (36), si fijamos las
dotaciones w1 = x1 y we = x2 y p = (1,1) tenemos que la asignacién (1, z2) es un equilibrio. Supongamos
que fijamos un u > 2 cualquiera y la dotacién

w; =4 —u,0),ws =(u—2,2).

En ese caso, tendremos que para p = (1,1), 1 = (4 — u,0) y 5 = (u — 2,2) son 6ptimas, y hay oferta igual
demanda, por lo que son asignaciones de equilibrio.

Para cada asignacién (x1,x2) en (35) que no estd en (36), tenemos que el costo de la canasta de 1 es
2+ p(2 — xe2) para zaa < 2 (si tuviéramos wee = 2, seria la canasta que estd en (36)). Por lo tanto, la
demanda 6ptima del individuo 1 es 217 = 2+ p (2 — x92) > 2, por lo que la asignacién no puede ser de

equilibrio.
Ejercicio 16’. Es idéntico al Ejercicio 16, s6lo que las canastas Pareto Optimas son aquellas en (36).

Ejercicio 17.A. Normalizando los precios a 1 y p, las demandas son

11
— (2. = — 1—
x1 (27 2p> y 2 (Olp, Oé)
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por lo que debemos tener

1+ JR=S !
—_ ap = — —
5 TP P=5

)= [((34)-(31-))- ()

Parte B. El gobernante debe elegir £ y xo para maximizar

y el equilibrio es

1 1
PR a  l—«
T{1Tig + T21T9y
sujeto a x11 + 221 = 1

T2 +x22 = 1

que se transforma en el problema de elegir x11 y =12 para maximizar

1 1 _
s, + (1 —x1)*(1— 212) ¢

Las condiciones de primer orden son

Ti2 % I22 1o
(z—> :2a<z—21> L w=(

15 53) }
()" =201-a) (m)“ 72 = (15 33)

Z12 Z22

Parte C. Poniendo las dotaciones iguales a la asignacién deseada por el gobernante, se obtiene que en
equilibrio la asignacién es la deseada.

Parte D. Como siempre, la condicién de optimalidad, que sale de la maximizacién del individuo, es que el

cociente de las utilidades marginales sea igual al cociente de precios:

Ty = 10
xlgip p727

Con esos precios en el equilibrio, el valor de las canastas es

_ T a1 7

prr = T 973 T
11 1116 22

pr2 = + =

18 3227 27
y el valor de las dotaciones es pw; =1y pwas = %. Por lo tanto, si 1 le transfiere % de unidades del bien 1 a

2, tendremos que el valor de las nuevas dotaciones w) y w) sera:

T e 24 18,22
pa=yg ¥ o Pe2=gT ot T o

Ejercicio 18.A. Usar Kuhn-Tucker en la maximizacién de

1 1
rixs + (1 —mp) + (1 —23)
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1 1
. s o . - 3 3 a l—a .
Ejercicio 19.B. El gobernante debe elegir z11, 212,221 y %22 para maximizar x{,27{, + 2555 © sujeto a

T11 + o1 = 1y 12 + x99 = 1. Sustituyendo las restricciones y tomando condiciones de primer orden con
respecto a x11 y 12 quedan las siguientes 4 ecuaciones

1 (=x % x 1=a
E(i) :a(i) T+ =1

Tr11 Tr21
(m) F = —2(11,a) (m) Ti2 + 222 =1

11 21

Llamando r = x12/x11 ¥ § = xe2/x21, de las dos ecuaciones de la izquierda obtenemos

1
9\ To2
irs = asl— r = 4a’s?72 5= (160!2 (1-a) )
Pt =1 g = o = !16042(1—a)22%
2(1—a) 4(1—-a)? =

4(1—a)?

Usando luego las definiciones de r y s y las restricciones de recursos queda

— _ l—z9p — ol-r
T11+ w2 =1 }é T717I21 }:> T22 = S5y

_ __ X292 _ 1—r
Ti2 +wop =1 5= 2 To1 =

Verificamos que para o = % queda x99 = 11/32 como en el Ejercicio 17.

Ejercicio 20.A. De las funciones de utilidad vemos que se tienen que producir si o si, bienes 2 y 3 (para
cualquier precio, habrd una demanda positiva de esos bienes). Por lo tanto, como las funciones de produccién

son lineales, debemos tener
1 1

p3=§ Yy pzzz

Como hay rendimientos constantes a escala, los beneficios son 0, la demanda del individuo 1 se obtiene

resolviendo el problema de elegir x2, x3 para maximizar

2logx3 + 3log x2
5

Como es una Cobb-Douglas (el 6 se puede sacar, y después se hace e elevado a la funcién de utilidad y queda

oy = (o,iﬁ) — (0,12,6).

b2 Dp3
Similarmente, para el individuo 2, la demanda es

5 b 15
=(0,—=,—=>) =(0,10=2).
X2 < 72p272p3> ( ’ ’ 2>
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El equilibrio es entonces

(,y),p] = {(((0,12,6), (0 10, 15)) , ((—%02—9 , (—1—21,22,0») , (13%”

20.B. El argumento en palabras es el siguiente: como las firmas tienen retornos constantes a escala, los
beneficios de ambas son 0 en cualquier equilibrio. Eso implica que las restricciones presupuestales de ambos
individuos son idénticas a las de la Parte A, lo que implica que sus demandas no cambian. Por otro lado,
las ofertas de las firmas son iguales a la Parte A. Como ni las ofertas ni las demandas cambian, el conjunto
de equilibrios es el mismo que en la Parte A.

20.C. Fijamos un nivel de utilidad u para el individuo 1, y debemos maximizar la utilidad del individuo 2

sujeto a la restriccién de recursos. Es decir, debemos elegir xs, z3, 32, y3 para maximizar

8 + log xo + log x3

21 — 31 _
sujeto a 6 + 0g (y3 x3); og (y2 — x2) .

3

ys = 30*4

Sustituyendo la tercera ecuacién en la segunda y despejando yo — x2, queda

2log (30 — 22 — 23) + 31 - 3
+ og( :U53) 08 (y2 — 22) = u<:>210g(0—%—@)+310g(y2—x2):5u—30<:>
5 2 3
log (y2 —x2) = gu—lo—glog (30—%—@,) <:>y2—$2:€3u 10—4 log(30— 242 —a3)

Despejando x4 de esta tltima ecuacién, y sustituyendo en la funcién objetivo obtenemos que debemos elegir
T3, Y2 para maximizar

yo =20+ 228 v 0

8+1lo ( 7e§u7107%10g(307%y27x3)> + log x3 =
&\ &3 r3 =15 — %2%6“_6

Ejercicio 21.A. Normalizamos los precios a (1,p). Para maximizar beneficios la firma elige y; para maz-
imizar
PV =Y+

2
que resulta en un vector de produccién éptimo y = ( 5, 2) y unos beneficios de £
2
El individuo maximiza su utilidad eligiendo x para maximizar xjxs sujeto a 1 +pre =1+ p+ %, que

arroja una demanda de x = ( +3 lp+ épz, 1 %ﬁ&) . El equilibrio se da cuando

2 p 2
=——4+1p=-
p 4+ p 3

La asignacién resultante es [z, y] = [(% %) (—é, %)] .

21.B. No hay que calcular nada. La oferta de la firma es igual, y la demanda del individuo es igual. El
equilibrio es la oferta y la demanda de la Parte A.

21.C. Si llamamos y (p) al vector éptimo producido por la firma cuando los precios son p vemos que el

ingreso total del individuo se puede escribir como (1, p) (w + y (p)). Por definicién de y (p) , sabemos que

(Lp)(w+y(p) = (1,p) <w+y (%)) :
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2
37
puede comprar, para cualquier p, es decir,

T (%w) = <w+y (%)) = (1,p)= (;w) =(1,p) (w+y (%)) <(L,p) (w+y(p)-

Eso asegura que si la economia se abre al libre comercio, el individuo estd mejor, pues si quisiera podria

2

Como en equilibrio, la canasta z (3,w) de autarqufa es igual a w +y (%), tenemos que z (2,w) siempre se

comprar lo que consumia antes de la apertura.

Ejercicio 22.A. De los beneficios de la firma deducimos que p2 < 1 = p; no puede suceder ya que los
individuos 1 a n siempre demandardn algo del bien 2, y po < 1 implica una oferta nula del bien 2. También
deducimos que p2 > 1 no puede ser, ya que implicarfa una oferta infinita para la firma. De ps = 1 deducimos
que ;1 = xj3 = d/2 para los individuos 1 a n 'y como x,41 = (d,0) obtenemos que la demanda agregada del
bien 2 es nd/2 que debe ser igual a yo = —y;. El equlibrio es entonces

o= (49 () (49 w0) ()0

x* y*

22.B. Lo udnico que cambia con n es y*.

Ejercicio 23.A. Lo que determina el equilibrio es la demanda del individuo 1 (el 2 se “come” lo restante),
y para cada precio hay un equilibrio, si lo que resulta es una asignacién alcanzable. En particular, para
cualquier precio p € [$,3],

(@i i) (1) = | (2L ) (2= 22 - 2 ) )

es un equilibrio. Es importante notar que, por ejemplo, [(z3;,275),(0,0), (1,p)] no es un equilibrio por més
que ambos estdn maximizando su utilidad, pues la asignacién no es alcanzable (se consume menos que lo
que hay en la economia).

23.B. Ninguno es Pareto Optimo, pues son todos dominados por la asignacién (z1,z2) = ((2,2),(0,0)).
23.C. Las preferencias del individuo 2 no son localmente no saciables.
23.D. La tinica asignacién Pareto Optima es ((2,2), (0,0)).

Ejercicio 24.A. Esta parte se puede hacer de dos formas. Se pueden hacer todos los cdlculos, o se puede
demostrar sin necesidad de calcular la demanda. Primero, notamos que las demandas estardn siempre
definidas para todo p > 0, y nunca podrd haber una que sea infinito aunque el precio del bien correspondiente
sea 0. La razon es que el término (x; — x2)2 presente en ambas utilidades, no permite que la demanda de
ninguno de los bienes sea “infinitamente grande”.

Para demostrar que la demanda de la utilidad uy es en efecto una funcién (una canasta para cada
p), asumamos que z e y son dos canastas distintas que estdn en la demanda para un p dado. Si asf es,
dan la misma utilidad, y ademds la canasta axz + (1 — a)y también se puede comprar. Calcularemos la
utilidad de azx + (1 — a) y y veremos que la utilidad aumenta si empezamos en a¢ = 0 y aumentamos a sélo
“marginalmente” (un poquito). Asi, habremos demostrado que no puede haber dos canastas en la demanda,
pues el individuo estaria estrictamente mejor si consumiera una canasta “en el medio”.
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Tenemos que
uz (az + (1 —a)y) = azy + (1 —a)y1 + vz + (1 — a)y2 — (az1 + (1 —a) y1 — az2 — (1 —a) y2)* .

Por lo que la derivada de esto con respecto a a y evaluada en a = 0 es

dus (ax +(1—a)y) _ Ous
da T Oy Y

ou
(x1 —y1)+ 8—; (T2 — 1) =1 =1 +22—Y2—2(y1 — ¥2) (1 —y1 — T2+ ¥2)
2y

y como usg () = us (y) (pues ambas canastas estan en la demanda),
2 2 2 2
ritay— (21 —22)” =iy — (W —y2) e m -yt oy = (21— 22)" — (Y1 —12)

por lo que

uy (y) = (21— 552)2 —(y1 — y2)2 -2y —y2) (w1 —y1 — 22 +12)
(z1 —22)* + (1 — 12)° — 2 (1 — y2) (w1 — T2)
= ((x1—m2)— (1 — 1)) >0

La otra forma de ver que la demanda de us es una funcién, y que estd definida en todo el dominio, es
hacer los célculos. El individuo debe elegir =, 2 para maximizar

Ty + 22 — (71 — 952)2

sujeto a p121 +pez2 < pr+p2
Si p1 # 0, definimos p = pa/p1 y este problema se transforma en el de elegir  para maximizar
l+p(l—az)+z—(1+p)°1—2)’

que arroja
J:2:1+1;]92=>x1:1—(1_—p)p2. (37)
2(1+p) 2(1+p)
Si p; = 0, tenemos que py > 0, y que el individuo maximiza su utilidad eligiendo 22 = 1 (de la restriccién
presupuestal) y 1 = 3/2 (de la funcién de utilidad). Otra forma de ver que esto es asi, es suponer que

p2 # 0, definir ¢ = p1/p2 y hacer las mismas cuentas que nos llevaron a (37) para obtener

1—gq (1-9)q

p=14+—21 =y =1-— .
2(1+q)° 2(1+q)?

En ese caso vemos que si ¢ =0, 1 = 3/2 y 23 = 1, como habiamos dicho.
La demanda en el caso de u; es

x1 (p) = x2 (p) = 1 para todo p > 0.

La diferencia entre esta demanda y la de la utilidad « (z) = min {x1, 22} es que esta demanda es una funcién
atin cuando uno de los precios es 0. Para ver que esa es la demanda, supongamos que 1 > xo para algin p
(serfa igual si asumiéramos x5 > x1). En ese caso, regalar 21 — 25 unidades del bien 1 aumenta estrictamente
la utilidad (el minimo no cambia, y el cuadrado de la diferencia se hace 0). Eso demuestra que las dos
demandas deben ser iguales. Para ver que se gastan todo el ingreso alcanza con ver que las preferencias son

localmente no saciables (ver la Parte C).
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24.B. La demanda del individuo 1 es (1,1) que por supuesto es continua en p. Es facil ver que las de-
manda de 2 es continuas, pues son sumas, restas, divisiones y multiplicaciones de funciones continuas, y los

denominadores son siempre distintos de 0.

24.C. La homogeneidad se satisface pues al multiplicar los precios no cambia la restriccion presupuestal. La
ley de Walras se cumple, pues las preferencias son localmente no saciables: de cualquier punto x, me puedo
mover a (z1 + &,x2 + €) y aumentard estrictamente mi utilidad.

Ejercicio 25.A. Supongamos, contrariamente a lo que queremos demostrar, que para algin individuo ¢
existen dos puntos que lo sacian, 2 y 2% # x!'. En ese caso, tendriamos x' > x para todo = € X; y 2% = z!.
Sin embargo, tendrfamos que como las preferencias son estrictamente convexas, az® + (1 — a) x? = x!' (pues
como X; es convexo, az’ + (1 —a)x? € X;) para cualquier a € (0,1), y eso contradice x! = z para todo
T € X;.

25.B. Si no existe ningin = que sacia al individuo, eso quiere decir que para todo z, existe y tal que y > x.
Para demostrar que las preferencias son localmente no saciables, debemos mostrar que hay algin z cercano
a x que es mejor que x, para todo z. El z que construiremos, serd una combinacién lineal entre x e y. Como
y = x, tenemos que ay + (1 — a)x > z, para todo a € (0,1). Entonces, para cualquier £ > 0, existe un «

suficientemente cercano a 0, tal que [jay + (1 —a)z —z|| <eyay+ (1 — o)z > x.

25.C. Para cada z; # z, como z} =; x;, tenemos que oz + (1 — ) z; >=; x; para todo a € (0,1) . Entonces,
para cualquier € > 0, existe un « suficientemente cercano a 0, tal que

loxzf + (1 — )z, — x| = al|zf — x| < e
y axf 4+ (1 — o) x; =; z;.

25.D. Sino hay un xf que sacia, ya sabemos por el Ejercicio 1 que pz* > K (y no hay nada que demostrar).
Supongamos entonces que existe un z; que sacia al individuo. Supongamos que contrariamente a lo que

queremos demostrar, x; # x; y ademds
pr;* < K. (38)

Si tuviéramos z;* = 7, como z; # x; y hay a lo sumo un z que sacia al individuo, tendrfamos z; > z7, o lo
que es lo mismo, z}* >; z. Pero eso contradice que z} sea 6ptimo en pxr < K por (38). Tenemos entonces
x* # x, pero es implica que las preferencias son localmente no saciables en z}* por lo que para cualquier €
tal que ||z; — 2F*|| < € implique pz; < K, tendremos que existe x} tal que ||z} — z*|| < e (es decir pz} < K)

*k

y i = x¥* =, xf, lo que contradice la optimalidad de x} en pr < K.

25.E. Paso 1. Demostraremos primero que si (z,y) Pareto domina a (z*,3*) , debemos tener que

i=1I i=I

j=J
pri > Zp w; + Z Gijy;‘ . (39)
1 j=1

i=1 i=
Si (z,y) Pareto domina a (z*,y*), existe algun i tal que z; >; z;. Como (z*,y*), p son un equilibrio, la
condicion (ii) de la definicién nos dice que

i=J

pri > pwi+ »_ 0ipy; > pa;. (40)
j=1
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Para el resto de los individuos, si (z,y) Pareto domina a (z*,y*), z; =; =} implica, por la Parte D, que
pueden pasar dos cosas

j=J
pri > pwi + Y 0iipy; > pa] (41)
j=1
o que =¥ = ¥ = x;, en cuyo caso,
px; = pr}. (42)

Sumando ahora para todos los individuos, las ecuaciones (40), (41) y (42) implican

=1 =1 =1 j=J
D opri> ) pri =) p|wit Y biy;
=1 =1 =1 j=1

que es la ecuacion (39), que es lo que querfamos demostrar.

Los pasos 2 y 3 son idénticos a las notas.
25.F. Es una mezcla de la Parte E y la demostracién de equilibrio con transferencias de las notas.

Ejercicio 26.A. La demanda de 1 es una Cobb-Douglas

y x12(p) = 1o
2p

1+p

z11 (p) = D)

26.B. La firma maximiza
V=2 + (1+2v=12) v

que arroja unos beneficios de 5—74\/7 — 2% en la cantidad 6ptima de bananas y = —% + %8 V/7, con un producto

de v
2 1 -1+ 7
m=\g w5

26.C. El individuo consume todos sus beneficios en bananas:

77 =10

221 =0 y o= 5ip

26.D. El precio que equilibra los mercados es aquél para el cual

1+0p /2 2 1
T11 +y1 <= 5 + 9 \/—<:>p 3 3\/_

1+p 7V/7-10 2 1 2 1
—= o —1-S 4+ VTep=21+2V7
T1o + Loy = wa + Yo % + 5 5T 18\f p 3+3\f

0, lo que es lo mismo,

Vemos que este precio coincide con el que sale de la Parte B: el precio era

1+2\/—_;/2_1+2,/§——\/' 3t3 \/—

26.E,H. En todas las asignaciones Pareto Optimas que nos pide este literal el individuo 2 consume

. 1 TW7-10
22 18 2+\/77
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por lo que debemos elegir cémo utilizar el resto de las bananas entre produccién de trigo y consumo del

individuo 1. Debemos elegir entonces b para maximizar

1
T{1TTo
1 7v7—-10
sujeto a x11 = 1+\/1_1_8;/_+—\/7_

Too = b

o lo que es lo mismo, elegir b para maximizar

2
1 -1
Y PRt RS Y
18 247

=

que arroja una utilidad méxima de

5—142;/% (36+18\/?+\/5\/3\/<70+23\/?—4\/6+48\/?—2\/6+48ﬁﬁ) (2+ﬁ)> (2+ﬁ)\/m

en

b

VT 11+ V6 +48V7
B 27
comparado con

1
T+2+ 371424+ 17\°
<+3+3\/_ +24+4V7\ 1 35+_\/7:1'024

2 2(3+3V0)) 6 Vae T
del equilibrio.

26.F. Cuando uno resuelve el problema de la Pareto Optimalidad, debe maximizar la expresién

2
ey f1o ATYTZ10 )
18 247

con respecto a b. Si la derivada de esta expresion, evaluada en el consumo del individuo 1 en el equilibrio no
es 0, quiere decir que el consumo del individuo 1 de bananas no es el que maximiza su utilidad. Por lo tanto

la asignacién no es PO.

26.G. No es Pareto Optimo porque el monopolista no toma los precios como dados. Es decir, no es un
equilibrio competitivo.

Ejercicio 27.A. Supongamos que pz** < K. Entonces, existe un ¢ (chico) tal que para todo = tal que
|[** — || < e

se cumple que pzr < K. Pero como las preferencias son localmente no saciables, sabemos que para alguno de
esos z, tendremos que x > z**. Para ese x tendremos entonces px < K y = > ™ > z*, lo que contradice
que x* = x para todo x tal que pr < K.

27.B. Aplicamos la Parte A poniendo z* = z** = z; (p,pw;) y K = pw;. Tenemos entonces que como
** = x*, porque son indiferentes, y x* = x para todo x tal que px < K, pz** > K. Esta tltima desigualdad

y pr** < K implican pz** = K o, lo que es lo mismo, pz; (p, pw;) = pw;.
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27.C. Por la Parte B sabemos que
I I
> pwi (ppwi) =Y puwi. (43)
i=1 i=1

Supongamos ahora que se viola la igualdad para el mercado k. Obtenemos entonces

I I
>0
g Tik (p, pwi) # E Wik = PrT1k + oo + DRTIK F DkWik + - + DrWIk- (44)
i—1 i=1

Las otras igualdades, para los mercados j # k, implican que
PjT1j + ... + %1 = Pjwij + ... + Pjwr;- (45)

Sumando el lado izquierdo de la ecuacién (44) més todos los lados izquierdos de cada una de las ecuaciones
en (45), y lo mismo con el lado derecho, y agrupando por individuo nos queda

Py + pro+ ... + pr1 # pwi + ... + pwy

lo que contradice la ecuacién (43).

Ejercicio 28. Del Ejercicio 21 sabemos que la oferta de la firma 2 es 4y, = (—p?,2p) con unos beneficios
de p?/4. La firma 1 tendrd una oferta dada por

(0,0) p<l1

v1=9 (~%9),y>0 p=1
(—00, 00) p>1

Descartando p > 1, que nunca puede ser de equilibrio, las demandas de los individuos serdn x; = (a +p?/4, 0)
y 22 = (0,(1 —a) /p). Si p < 1, tendremos que la firma 1 estard inactiva, y el equilibrio se encuentra de la

ecuacion

2
O:Dﬁ—%—l—l:a@p:%/l—a

que es consistente con p < 1 si y sélo si a > 3/4. Para p = 1, el equilibrio se encuentra de la ecuacién

p? 1
0 = D¢>71+17y:a@—4—1+17y:a@
N
Yo

Ejercicio 29.A. Fijamos el precio del bien 1 a 1 y llamamos p al precio del bien 2. Las firmas eligen y; para

1
maximizar pk (—y1)* 4+ y1. Resolviendo la condicién de primer orden obtenemos: para la firma 1, y; = fp%
4
3

1 1
y yo = 43 (2)*; para la firma 2, y1 = — (2p)® y yo = 16 (2)? . Para la parte siguiente, los beneficios son

1 1
T :p4% (g) 3 —p% = 3p% y T2 :p]_6 (174))3 — (2p)% = 6\751)%

29.B. La demanda del individuo 1 se encuentra eligiendo x1 y zo para maximizar x1x2 sujeto a x1 + pra =

14 3p3 1+3ps
x1 (p): 5 s .

1+ 3p%, que arroja

2p
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L2
En forma similar el individuo 2 elige 1 y 2 para maximizar z; x5 sujeto a su presupuesto, z1 + pry =

1+ 6\3/§p%, que arroja

1+6¢2p% 2+ 12¢/2p3

29.C. El equilibrio se encuentra igualando la oferta del bien 1 a la demanda del bien 1 (o lo mismo con el
bien 2):

14+3p3  1+6V2ps
+
2 3
Ejercicio 30.A. La firma elige y; para maximizar p2,/—y1 + y1, cuya condicion de primer orden es

=2 p% —(2p)F © p=0.24671

1 1\? 1
—p(—11) Pil=0s (—) = — &y =—p? ey =2p y los beneficios son 7 = p?.

p —U1
30.B. El individuo debe elegir x1 y x2 para maximizar xjxs sujeto a x1 + prs =1 +p2, lo que arroja

14+p% 14p?
z(p) = > o )

30.C. Igualando x1 = 1 + y; obtenemos

1+ p?

£t oe()- () o (33)

Ejercicio 97.A. La firma elige | para maximizar pxl® — wl, que arroja Bpkl®~! = w < I* = (—) o y

w E% w ﬁ 1 8
o)) - %),

El individuo entonces elige ¢ y o para maximizar c®o'~®
vyo=(1—-a) (ambas expresiones se pueden simplificar). Para encontrar el
1

equilibrio, ponemos o = 1 — I* y obtenemos para v =w/py z = vF-1

los beneficios son

sujeto a pc + wo < 7+ w, que de la férmula de la

7r+w

Cobb-Douglas es ¢ = o T%

T4w
w

(pli)l ﬂwﬁ T <ﬁ1 B 761 [3) w ﬁ L w ﬁ+1 N N
(1-a) w =1- (W) < (1-a) (nlﬂ (E) <ﬁ1—ﬁ 75144) +1> — 1(

y de ahi se despeja H

1 * _ (p)? _op (22 _ 1P
Para el caso concreto def=4rk=1ya=3, quegia = (L&) yr=pE —w(L) = 1Z. Las
122 24? o . . .
demandas éptimas son ¢ = % 14 +w — pltdu? yo=2iwt® _ p 4wt G hormalizamos el precio del bien
p 12pw 3 w 6w
Jo . o - 12+4w2 _ A 2 _ ﬁ
a 1, obtenemos que el equilibrio se da cuando 0 =1 —1y eso es —55- =1 (2w) S w =5,

Ejercicio 98.A. Normalizamos el precio del bien 1 a 1 y llamamos p al precio del bien 2. Si p > 1, la
demanda del bien 1 serd al menos 1 4+ p > 2, que es lo que demanda el individuo 2; por lo tanto p > 1 no
puede ser un equilibrio. En forma similar 1 > p no puede ser un equilibrio pues 2 demandaria 1+p > 2 del
bien 2. El tnico equilibrio es con p = 1, y la asignacién de equilibrio es (1,1).

Maés mecénico: las demandas 6ptimas de 1 y 2 son

. . (1+p,0) p>1
+ + 3
xl(p)<Tp72—pp) yxz(p): (8,278) SG[O,Q] Slp:1
lt+p
@,p) 1>p
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y la demanda total del bien 1 es: #+1+p: %p+% >2sip>1; 1—'2”)+0< 1 < 2sip< 1. Por lo tanto
el equilibrio es con p = 1, y la asignacién de equilibrio es z1 (1) = (1,1), con x2 (1) = (1,1) para que oferta
sea igual a demanda.

98.B. Para encontrar las asignaciones Pareto Optimas fijamos la utilidad del individuo 2 en , y encontramos
la asignacién que maximiza la utilidad de 1. Elegir x1; y 12 para maximizar x11z12 sujeto a 2 —x17 +2 —
T12 — 11 = U & 212 = 4 — 2x17 — u. Sustituyendo x12 en la funcién objetivo y tomando la condicién de
primer orden obtenemos

U

U
17 25

u U
x11(4—2x11—u):xx’1‘1:1f_;;x*1f2:2,§yx§1:1+ .

4

En el equilibrio, el individuo 1 obtiene 1 de utilidad y el 2 obtiene 1 también. Por lo tanto, si ponemos
u =1, obtenemos 2} = (2,3) y 23 = (3,3) que arrojan utilidades de uy =32 =2 >1yup=2+1-3 =1
Obtenemos que la asignacién de equilibrio no es Pareto Optima.
98.C. Tenemos 17 = Ty = tﬂ%u vy 11 + 221 = 2, 0 T = 15 = t. Se puede hacer casi sin hacer
cuentas, igual que en la Parte A. Normalizamos el precio del bien 1 a 1 y ponemos ps = p. Por cada unidad
del bien 1 que compran, deben pagar 1 + ¢, por lo que la demanda del individuo 1 de ambos bienes es

T = (%, ﬁ%) . Para el individuo 2, si p es mayor que 1 + ¢, tendremos que la demanda total del

bien 1 serd 1;(’1’13;1 + 1+1PJ::T2 = ;a’:;; + IJ{J’:t > 22(112;) + 21+—+2tt = 3; si p es menor que 1 + ¢, tendremos que
la demanda total del bien 1 serd ééﬂt’; + 0 < 1. Por lo tanto, p =1+ ¢.

Con cuentas,

L o p>1+t
n o) = (G TR ) vaa o) = (s B —s) e 0g] sip=1e
0, HEH2 1+t>p

El precio como funcién del impuesto se encuentra igualando oferta y demanda. Vemos que no puede
haber un equilibrio con p > 1 + ¢ ya que tendriamos

1+p+Ty 1+p+Ts 1+p+t 14+p+t 1—-2t
2(1+1) 14+¢ 2(1+1) 1+4¢ 3

<

W=

que es una contradiccién. En forma similar, p no puede ser menor que 1 + ¢, ya que tendriamos

14+p+Ty 1+p+t
—_— =0 ———=2sp=3(14+1%).
2(1+1) 2(1+1) p=3(1+1)

Obtenemos entonces p = 1+ ¢, y la asignacién de equilibrio es x1 (t) = (%, %) =(1,1) = x5 (t).
Lo curioso de este ejercicio es que el impuesto no arregla el problema de la externalidad, ya que el
comportamiento del individuo 2 no se afecta con impuestos en equilibrio.
Ejercicio 99.A. Si p; > 0, la demanda del individuo 2 es x5 (p) = (21%, O) y la demanda del individuo 1
sale de elegir z11, z12 para maximizar z11 + /712 sujeto a p1x11 + paw12 = 2p;1. Despejando de la restriccion
presupuestal obtenemos que debe elegir x15 para maximizar 2 — %%12 +/712. La condicién de primer orden,
siz; >0 (02> ‘%1’12) es
p2 1

P 2/Z12

2
y eso implica z1; = 2 — %4—’;% =2-— 4%2. Esto es mayor que 0 si y sélo si 8 > %, que con la normalizacién
2

p2=1es 8 >py. Sip; > 8, tenemos x1; =0y x12 = 2p;.

2
4
< T2 = _4;0%
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Como debemos tener x15 = 2 para que alguien se consuma el bien 2, obtenemos p D=2 o pp = 2v2ps.
2

Normalizando py = 1 tendremos p; = 2v/2, x5 (p) = (%, 0) ~ (0.7,0) y z1 (p) = <2 — %, 2) ~ (1.3,2).
99.B. La demanda del individuo 2 es ahora z2 (p) = (0,2) mientras que la del individuo 1 es la misma: si
p1 > 0 (que lo usamos para encontrar la demanda del individuo 1) zq (p) = ( - 4p—p12, 4: ) ;sipp =0, la
demanda del individuo 1 por el bien 1 es infinita (y por tanto no puede haber equilibrio con p; = 0). Pero
si p1 >0, z11 (p) < 2, y no hay equilibrio tampoco.

Ejercicio 103.A. La manera més fdcil de hacer esto es decir: si las preferencias son monétonas, son
localmente no saciables, y si son localmente no saciables, demostramos en clase y ejercicios que se cumple la
ley de Walras. Para ver que son mondétonas, alcanza con ver que para g1 > 21y Y2 > 22 u1 (y) > vy (z) y
también uy (y) > ug (). Para ver eso, ponemos u1 (y) = y3y2 > 23y2 > 2312 = up (), y el caso de ug es
similar y lo omitimos.

Ejercicio 103.B. Normalizando el precio del bien 1 a 1, sabemos que las demandas son

21 (p) = 2(154+3p) 15+ 3p 23 (p) = 5+ 17p 54 17p
1P) = 3 3 3p y X2 \p) = 2 ) 2p

por lo que el equilibrio se da cuando M + 5+17” =20 p= % De ahi obtenemos x1 (p) = (%, 8) y
v2 (p) = (%,12).

Ejercicio 103.C. Fijamos la utilidad de 1 en u y maximizamos la utilidad de 2. Debo elegir z1 y x2 para
maximizar Tsq o2 sujeto a x%lxlg =u x11 +x21 = 20y 12+ 222 = 20 (y todos los x positivos). Por lo tanto
queda que debo maximizar (20 — 211) (20 — 212) + A (¥11?@12 — @) . Si tomo las condiciones de primer orden
con respecto a 12 y 11 y despejo A y sustituyo en la otra queda:

T22 T12

{1322 =2X\z11212 y 21 = /\Jill} = — =2—

T21 T11
Luego, usando las restricciones de recursos, queda 22=212 — 2—1~2 y si despejamos x12 como funcién de z1;

) ) 20— 11
20x
_ 11
queda x5 = 102

Las asignaciones Pareto Optimas son aquellas en las cuales 11 € [0,20], 212 = 400 z“ y xo1 = 20 — 211

y @22 = 20 — T12.

Ejercicio 103.D. Si la asignacién propuesta fuera de equilibrio, tendrfa que ser Pareto Optima, y vemos
200 _ 20

20—-10 ~ 3 -
Hay dos formas de hacer este ejercicio. Podriamos averiguar el precio de la condicién de tangencia en

que cumple con las condiciones de la Parte C: z15 =

la asignacién que nos dan, y con eso averiguar qué transferencia de dotaciones se precisa para ese vector de

O

precios. La tasa marginal de sustitucién para el individuo 2 es 42 = % que debe ser igual al ratio de precios
3

% = p. Para que la demanda del individuo 2 sea (107 %) a los precios dados, su dotacién debe ser

20 — 3 %17
%:10@2:%:1275

Otra forma de hacerlo es resolver el equilibrio para todo z, y encontrar el z que hace que las asignaciones
sean las propuestas. En ese caso las demandas son

2(z+p3) z+p3 20 — z 4+ pl7 20—z + pl7
1 (p) = 3 3 y 22 (p) = 5 , o

y obtenemos Q(ng 3) 4 20_z2+p 17— 20 & p=57— —z Luego, sustituyendo en cualquiera de las 4 demandas,

e igualando al dato de la letra, obtenemos z :
20— z+pl7 20— 2+ (5 —552) 17 51

T21 =
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(como antes). Debemos verificar que con este z las canastas son las de la letra, que se cumple. Y sélo para

chequear, vemos que el precio es el mismo que por el otro método: p = % — %57‘1 = %.

Ejercicio 101.A. Normalizamos p; = 1 y po = p. Para cada vector de precios, la demanda del individuo 1

o= (250 (46)

y la del individuo 2 es x5 (p) = {x : x1 + pra < 1+ p} (es decir, cualquier cosa le sirve). Por lo tanto, para

€s

cada p, alcanza con poner las demandas del individuo 2 para que los totales demandados sean 2 de cada

bien: L+ L+
p p
=2—-— =2—-—. 47
T21 9 y 22 % (47)
Debemos tener cuidado que las cantidades demandadas por 1 sean menores que 2, para que las cantidades
de 2 sean positivas. Eso arroja 1—;” <2&p<3y 12—;” <2,0p> % Entonces los equilibrios son: cualquier

p € [3,3] vy las cantidades dadas en las ecuaciones (46) y (47).

101.B. Ningtn equilibrio es Pareto 6ptimo, ya que la tnica asignacién PO es aquella en la cual el individuo
1 se lleva todo.

101.C. Las preferencias de 2 no son localmente no saciables.

102.A. Para la firma 1, tenemos que para p < 1 no produce, y para p > 1 produce infinito, mientras que le

da lo mismo hacer cualquier cosa sip=1:

(0,0) p<l1

() =19 (-4,9),y>0 p=1
(—O0,00) p>1

. . . . 2
La firma 2 elige z para maximizar py/T — x, que arroja ys (p) = <f%, %) .
102. Los individuos consumen todo su ingreso en el bien que les interesa. Como el individuo 1 es duenio de

la firma 1, y tiene 1 — a unidades del bien 1 su demanda es

_ (1—&,0) pgl
o (p){ (0,0) p>1

Fl individuo 2, por su parte, tiene a unidades del bien 1, y unos beneficios de %2, por lo que su demanda es
22 (p)= (0.2 +5).
102.C. Si p > 1, la firma 1 demandar4 infinito del bien 1, que no puede ser parte de un equilibrio. Sip < 1,

la firma 1 estd inactiva, por lo que el mercado del bien 1 se equilibra cuando

2
p
x11(p)+x21(p):w11+w21+y21(p)@17a+0:1fz@p:Q\/E.

Por lo tanto, debemos tener que a < % (para que se cumpla que p < 1).
Sip=1, la firma 1 estd activa, y el mercado se equilibra cuando

1 1
J:n(p)-i-xgl(p)=w11—|—w21+y11(p)—|—y21(p)<:>1—a—|—0:1—1—|—y11<:>y11:Z—a.

Por lo tanto, para a < i, el equilibrio es

[p7 x17x27y17y2] = [(172\/5) 7(1 - a70) ) (07 \/a) 7(070) ’ (*aa\/a)] .
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Para a > %, el equilibrio es

1 1 1 11
D, 21,22, y1, 1] = (171)7(1—(170)7(0#‘1'1) , (Z —aafl—z) , (_Z’ﬁﬂ .

Ejercicio 103.A. La manera més facil de hacer esto es decir: si las preferencias son mondétonas, son
localmente no saciables, y si son localmente no saciables, demostramos en clase y ejercicios que se cumple la
ley de Walras. Para ver que son monétonas, alcanza con ver que para y; > 1 y Yz > X2 ug (y) > ug () y
también us (y) > usg (z). Para ver eso, ponemos uj (y) = y3y2 > zys > w320 = u1 (), y el caso de us es
similar y lo omitimos.

Ejercicio 103.B. Normalizando el precio del bien 1 a 1, sabemos que las demandas son

1 (p) = 2(15+3p) 15+ 3p 22 (p) = 5+17p 54+ 17p
1\P) = 3 y 3p y 2(p) = 2 ) 2p
por lo que el equilibrio se da cuando g153;3p2 + 5+—2172 =20&p= % De ahi obtenemos z; (p) = (%, 8) y

— (60
Jig(p)— (7712)
Ejercicio 103.C. Fijamos la utilidad de 1 en u y maximizamos la utilidad de 2. Debo elegir z1 y xo para

maximizar xo1T92 sujeto a x%lxu =7 211+ 21 = 20y 212+ 222 = 20 (y todos los x positivos). Por lo tanto
queda que debo maximizar (20 — z11) (20 — z12) + A (x112x12 — ﬂ) . Si tomo las condiciones de primer orden

con respecto a 12 y x11 y despejo A y sustituyo en la otra queda:

2 T22 T12
{%22 = 2)\%11%12 y To1 = )\%11} = == =2—
T21 T11
Luego, usando las restricciones de recursos, queda 38_:?{;;‘ = 2%% y si despejamos x12 como funcién de x1;
__ _20x
queda x12 = o

Las asignaciones Pareto Optimas son aquellas en las cuales z1; € [0,20], 212 = %ﬁ y xo1 = 20 — 211
Yy Too = 20 — X12.
Ejercicio 103.D. Si la asignacién propuesta fuera de equilibrio, tendrfa que ser Pareto Optima, y vemos

que cumple con las condiciones de la Parte C: x15 = 4029010 = %.

Hay dos formas de hacer este ejercicio. Podriamos averiguar el precio de la condicién de tangencia en
la asignacién que nos dan, y con eso averiguar qué transferencia de dotaciones se precisa para ese vector de
precios. La tasa marginal de sustitucién para el individuo 2 es 43 = % que debe ser igual al ratio de precios
3

po = p. Para que la demanda del individuo 2 sea (10, %) a los precios dados, su dotacién debe ser

20 — 3417
%:m@z:%:m.?&

Otra forma de hacerlo es resolver el equilibrio para todo z, y encontrar el z que hace que las asignaciones

sean las propuestas. En ese caso las demandas son

2(z+p3) z+p3 20 — z+pl7 20—z + pl7
1 (p) = 33 y z2(p) = 5 ) 5

y obtenemos 2(’2;’)3) + 20722“’17 =20&p= % — %z. Luego, sustituyendo en cualquiera de las 4 demandas,

e igualando al dato de la letra, obtenemos z :

20 — 17 20— z+ (22— L) 17 51
22+p — < (21 63'2) =10 2z ="

4
(como antes). Debemos verificar que con este z las canastas son las de la letra, que se cumple. Y sélo para

chequear, vemos que el precio es el mismo que por el otro método: p = % — é% = %.

Z21 =

[\)

165



Ejercicio 104.A. FEl ingreso de ambos individuos es p; + po y por la férmula de la Cobb-Douglas, las
1 = (pr + pa) 11 21 3 = (p1 + pa) 21 11
1= P1TP2 391 3 Yy X2 = (pP1 T P2 391 3ps)
El equilibrio se da cuando 11 +x21 = 2, por lo que normalizando el precio del bien 1 a 1 (y llamando p = p)
1+p 242 2 4 4 2
—_— t——=2 =1 === =(=,=).
3 3 R (3’3)“2 (3’3)

104.B. La respuesta obvia es que si, por el Primer Teorema del Bienestar. Sin embargo, las versiones

demandas son
obtenemos

que vimos en clase tenfan firmas. En ese caso debemos modificar este problema, y agregar una firma con
Y, = fR%r (que solo puede “destruir” bienes), y decir que como los beneficios seran 0, ya que la firma elegird
y = (0,0), no importa la asignacién de propiedad. En ese caso, el equilibrio competitivo es el mismo que el
que acabamos de encontrar, y es Pareto Optimo.

Otra forma de hacerlo es primera calcular la utilidad de los individuos en equilibrio son u; = uy =
% (%)2 = g—? Para encontrar las asignaciones Pareto ()ptirnas, debemos elegir x1 y x2 para maximizar xnx%Q
sujeto a x11 + To1 = 2, T12 + XToy = 2 Y X3,292 > U para todos los valores posibles de u (entre 0 y 8).
Claramente, la restriccién de U estard activa (si 23,222 > W, podrfa bajar los consumos del individuo 2
un poco y aumentar los de 1, y aumentaria el valor de la funcién objetivo). Entonces, de la restriccion
despejamos x93 = T/x3;, por lo que en la restriccién de recursos del bien 2 queda w13 = 2 —u/z2,. De la
restriccién de recursos del bien 1 obtenemos x1; = 2 — x21, por lo que la funcién objetivo es ahora

N2 s
U =52 4
(29521)(2—2) = T =3

La cuenta para llegar a eso es complicada, si queremos despejar xs;. Sin embargo, se puede calcular la

condicién de primer orden, y verificar que se cumple para xa; = %.
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Teorfa de Juegos.

Un juego en forma normal es un triplete I'y = [I, {Si}{ ) {ul}{ donde

e [ es un conjunto finito de jugadores que normalmente llamaremos I = {1,2,...,I}.

e S; es, para cada jugador 7, un conjunto que llamaremos el conjunto de estrategias. Son las cosas que
puede hacer el jugador i en el juego. Para S = 57 x ... X S, a cada s € S lo llamaremos un perfil de
estrategias: una estrategia para cada jugador.

e u; : S — R es lafuncién de utilidad del jugador 4. El niimero u; (s) es la utilidad que obtiene el jugador
1 cuando él juega s; los demds (sus “oponentes”) juegan S_; = (81, ..., Si—1, Sit1, -, SI) -

Los juegos se utilizan para modelar situaciones que son de interés para el investigador. Por ejemplo, en
1964 fue asesinada en Queens, Nueva York, una chica llamada Kitty Genovese, mientras 38 personas miraban
sin intentar evitarlo (la persona que la atacé estuvo més de media hora golpeandola, atacéndola sexualmente
y acuchillandola mientras la gente miraba y no llamaba a la policia, o intervenia). Esta situacién resulté
incomprensible para muchos hasta que un economista modelé la situacién como un juego y observé que el
resultado “natural” en el juego que habia planteado era precisamente que nadie hiciera nada.

Por supuesto, una vez que nos planteamos un problema, o un juego, debemos decidir qué vamos a entender
como el resultado “natural” de esa situacién. Es decir que una vez que especificamos un grupo de jugadores,
sus estrategias y sus utilidades, debemos preguntarnos “cémo actuaria un determinado grupo de gente si
estuvieran en una situacién como la que plantea mi juego”. La terminologia que se usa para “resultado
natural” es equilibrio: debemos preguntarnos cudl es un concepto razonable de equilibrio; o lo que es lo
mismo, debemos preguntarnos cudles son las combinaciones de estrategias que tenderemos a observar.

En la profesién hay atin bastante desacuerdo sobre cudl es el resultado natural en cualquier juego que nos
planteemos. Comenzaremos ahora por ver los conceptos de equilibrio menos disputados, o mds aceptados.

Comenzaremos por definir el concepto de estrategia dominada: es una estrategia que le va peor que a
otra, sin importar lo que hagan los demds. Definimos entonces S_; = 57 X So X ... X S;_1 X S;41 X ... X S,
el conjunto de todas las combinaciones de estrategias que pueden adoptar “los deméds”, cuando el jugador ¢
estd comparando sus estrategias. Es decir, s_; € S_; es una combinacién de estrategias para los jugadores
1,2,...,i—1,i+1,...,I. Una estrategia s; para el jugador ¢ es (débilmente) dominada si para algun s} € S;
sucede que

w; (8, s_;) > u; (si,s_;), para todo s_; € S_;

y la desigualdad es estricta para algtn perfil s ; € S_;. En este caso, decimos que s; domina a s;. Es decir,
una estrategia s; es dominada si existe otra s} (la que la domina) a la cual le va mejor que a s; para cualquier
combinacion concebible de las estrategias de los demds jugadores (y en algunos casos le va estrictamente
mejor). Obviamente, una estrategia dominada no deberfa ser jugada nunca: para cualquier creencia que
tengamos sobre lo que van a hacer los demds, siempre convendra jugar s, y no s;. Si pensamos que todos
los demds participantes del juego son racionales, y por tanto no jugardn estrategias dominadas, podemos
imaginarnos un juego en que de los espacios de estrategias se han eliminado las estrategias dominadas, y
podemos ver si en este nuevo juego hay estrategias dominadas. Asi, podemos seguir el proceso. Si todas
las estrategias menos una se eliminaran en algin paso, el juego seria soluble por eliminacién iterada de
estrategias dominadas. Veremos ahora un ejemplo de un juego sencillo (tomado del Mas-Colell, Whinston
y Green) que es soluble mediante la eliminacién iterada de estrategias dominadas.
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Ejercicio 1. El hermando del fiscal. En las siguientes matrices estdn el dilema del prisionero “tipico”
y una variante llamada “el hermano del fiscal”. En el dilema del prisionero, si ambos confiesan, van presos
5 anos, si uno confiesa y el otro no, el que confesé recibe una pena muy chica, 1 ano, y al otro lo guardan
10 anos. Si ninguno confiesa, sélo los pueden acusar de algin delito menor, y estdn 2 anos presos. En la
variante “el hermano del fiscal”, si ninguno confiesa, el fiscal puede liberar a su hermano, el jugador 1. En
las matrices aparecen dos mimeros en cada celda. El primero corresponde a la utilidad del jugador fila, y el
segundo al del jugador columna. Ademds, habitualmente se representa al jugador 1 en las filas y al dos en

las columnas.

N c N C
N -2,-2 -10,-1 N 0,-2 -10,-1
c -1,-10 -5,-5 c -1,-10 5,5

Parte A. En el Dilema del Prisionero, muestre que la estrategia N es dominada para ambos jugadores.

Parte B. Muestre que en el juego del Hermano del Fiscal, aunque N no es dominada para 1, el juego es

soluble por eliminacion iterada de estrategias dominadas.

Ejemplo 2. Solucién de Cournot por eliminacién iterada de estrategias dominadas. En la version
sencilla del modelo de Cournot, hay dos firmas, con costos marginales ¢; y ¢o. Cada una debe elegir un nivel
de produccién ¢; € Ry, y enfrentan una demanda p = a — b (g1 + ¢2) . Asi, los beneficios de la firma 1 son,

ala—b(q+q2) —cal.
El juego en forma normal es
2
Py = {12} {Riq:la—b(a +a) —al}i, |-

La mejor respuesta del jugador 1 a cualquier cantidad g2 que se imagine que va a producir la firma 2 se

encuentra resolviendo el problema de elegir ¢; para maximizar

qila—0b(q +q2) —ci]
De las condiciones de primer orden obtenemos

a—bga—cy < a—cq
q2 >
b (q2) = { 2 b

0 q2>a__b°l.

y los beneficios para la firma 1 son entonces (a — bgy — ¢1)* /4b. A la funcién by (+) se la llama funcién de

reaccién, o de mejor respuesta. En forma similar, obtenemos

—bg1—c —cy
2 (41 0 q > a—cy
b
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Supongamos que la demanda viene dada por 20 — ¢; — g2 y que los costos marginales son 0. Lo méds
obvio, es que ninguno producira cantidades mayores que 20. Pero mirando la funcién de reaccién, o de mejor
respuesta, uno ve que aun si el otro produjera 0, no seria 6ptimo producir mas de 10. Probablemente, si
méis de 10 no es éptimo para 0, no sea 6ptimo para ninguna cantidad g—; > 0 del oponente. Verificamos
eso ahora: 10 da un beneficio de 10 (10 — g_;) mientras que producir ¢; > 10 arrojarfa unos beneficios de
B (qi,q—i) = ¢; (20 — ¢; — q—;) , que es menor que 10 (10 — g—;), pues para g; mayor que 10 es decreciente y
son iguales en ¢; = 10. Esto se puede ver de la derivada de los beneficios

dB
dg;

=20—2¢; —q_, <0 si ¢ >10.

También, de la grafica de los beneficios,

A
B(gi.q.i)

ah
“\.
/ \
4 Y
.F.‘r \'\.
£ LY
;/' \
/ \
A >
IO—q_i/2 20—6]-i qi

vemos que si ¢_; no serd mds chico que 0, 20 — g—; no serd més grande que 20, por lo que (la mitad, donde
estd el méximo) 10 — ¢_;/2 no serd mds grande que 10. Por lo tanto, 10 — ¢_;/2 queda a la izquierda de 10,
y por lo tanto, si ¢; es mayor que 10, como la pendiente es negativa, convendra elegir siempre 10 y no g;.
Quizéds haya algo mejor que 10, pero seguro que 10 le “gana” a ¢;, que es la idea de dominancia ;Por qué
elegimos 10 como la cantidad que “domina’? Porque 10 es la mejor respuesta a que el otro produzca 0.

Sabiendo que ninguno de los dos va a producir més que 10, las cantidades g; menores que 5 estdn domi-
nadas por 5, pues 5 arroja unos beneficios de 5 (15 — ¢g—; ) mientras que producir ¢; < 5 arroja ¢; (20 — g; — g—;)
que para g; entre 0y 5y g_1 < 10, es creciente, y son iguales en ¢; = 5. {Por qué elegimos 5 como la cantidad
que “domina”? Porque 5 es la mejor respuesta a que el otro produzca 10.

Sabiendo que ninguno de los dos va a elegir cantidades afuera de [5, 10], cantidades mayores que 7.5 = 1—25
estdn dominadas por 1—25, pues esto arroja beneficios de 1—25 (% — q_i) y producir ¢g; > 1—25 arroja q; (20 — ¢; — q—;)
que es decreciente para ¢; > % cuando q—; > 5. ;Por qué elegimos % como la cantidad que “domina”?
Porque % es la mejor respuesta a que el otro produzca 5.

15 25

Si el otro no va a producir mas de -3, cantidades menores a % estdn dominadas pues ¢; (20 — ¢; — ¢—;)
25

T .
Continuando de esta manera, tenemos que los limites superior e inferior del intervalo van evolucionando

es creciente para q_; < 1—25 v q <
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como muestra la siguiente tabla (de cada nimero, ponemos en diagonal hacia abajo su mejor respuesta)

0 10
5 10
15
5 7
2% 15
4 2
25 55
4 8
105 55
16 8
105 215
1 2

Los nimeros siguen la siguiente progresién

que converge, por supuesto, a

Vemos entonces que si los empresarios son racionales, no jugardn més de 10. Si los empresarios saben que el
otro es racional, no jugardn menos de 5. Si los empresarios saben que el otro sabe él es racional, no jugaran
més de 15/2. Continuando de esa manera, vemos que el la unica cantidad que sobrevive la eliminacién iterada

de estrategias dominadas es 20/3 (que es el equilibrio de Cournot que ya han visto en otros cursos). ll

Ejercicio 3. Este juego se utiliza algunas veces para mostrar que la eliminacién iterada de
estrategias dominadas no es una buena prediccién de juego. En particular, sucede que cuando
se juega este juego, lo que se observa es que la gente no juega la tinica estrategia que sobrevive
la eliminacién iterada de estrategias dominadas. Considere el siguiente juego. Hay 10 jugadores, y el
espacio de estrategias de cada uno es S; = [0,100] . El jugador que nombra el mimero mds cercano a 1/2 del
promedio de los nimeros nombrados por todos se gana 1 peso. Es decir, si para cada perfil de estrategias s

definimos
5o 2t
10
y la distancia de cada estrategia s; a 5/2 como
]
di (S) = 5 — S;

la utilidad de cada jugador para un perfil de estrategias s es

1 sid;(s) =min;d; (s
Uu; (S) — ( ( ) J ) ( )
0 en otro caso.
Parte A. Encuentre las estrategias dominadas en este juego.

Parte B. Encuentre las estrategias que son dominadas una vez que se eliminaron las estrategias dominadas
para todos los jugadores. Es decir, encuentre las estrategias que son dominadas si se sabe que los demds

jugadores no jugardn una estrategia dominada.

Parte C. Demuestre que si, repitiendo los pasos anteriores n veces, se sabe que nadie jugard ningin nimero
mayor que 100/2"~1, entonces las estrategias entre 100/2"~! y 100/2" estdn dominadas.
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Parte D. Demuestre que el tunico perfil que sobrevive la eliminacién iterada de estrategias dominadas es
aquél en el cual todos juegan 0.

Aunque es dificil argumentar en contra de la eliminacién iterada (desde un punto de vista 16gico al
menos), sucede que en la mayoria de los juegos de interés no hay estrategias dominadas. Por lo tanto, el
concepto de equilibrio “se jugard algin perfil de estrategias que sobreviva la eliminacién iterada de estrategias
dominadas” no es muy ttil: en la mayorfa de los casos no elimina ninguna estrategia. Es decir, en muchos
casos no arroja predicciones concretas (hay multiplicidad de equilibrios).

La gran contribucién de John Nash a la teoria de juegos fue “inventar” un concepto de equilibrio que es
“razonable” y que arroja una prediccién concreta en una gran variedad de contextos. Un perfil de estrategias
s€ S =051 X...x Sy es un equilibrio de Nash en el juego I'y = [I, {Sl}{ , {uz}ﬂ si para todo 1,

ui (8) > u; (s;,5_;) para todo s, € S;.

Es decir, un perfil de estrategias s es un equilibrio de Nash si, suponiendo que los demds van a jugar
S—i = (81,82, ..e; Si—1, Si+1, -, S1), €l jugador ¢ maximiza su utilidad jugando s;. Visto de otra forma, un
perfil s es un equilibrio de Nash si no hay ningin jugador ¢ que quiera desviarse de s;, dado lo que estan
haciendo los demds: no existe ¢ tal que para alguin s;, u; (s}, s—;) > u; (s).

El siguiente ejercicio muestra que siempre que la eliminacién iterada de estrategias dominadas arroja una
prediccién unica (el “mejor de los mundos” para alguien que desee utilizar ese concepto de equilibrio), esa
prediccién también serd un equilibrio de Nash. Es decir, siempre que la eliminacién iterada “sirve”, también

sirve el equilibrio de Nash.

Ejercicio 4. Demuestre que si en un juego (con una cantidad finita de estrategias) hay un dnico perfil de
estrategias que sobrevive la eliminacién iterada de estrategias dominadas (es decir, el juego es soluble por
eliminacién iterada de estrategias dominadas) entonces ese perfil de estrategias es un equilibrio de Nash.

Ejercicio 5. Los jugadores Juan e Inés van a jugar un juego. La naturaleza ha elegido con probabilidad %

cada una de las siguientes matrices de pagos

Ines Ines
I D I D
Al11,-1] 1,1 Al-1,11] 1,1
Juan ’ Juan
Bl-1,11| 1,1 Bl11,-1| 1,1

Parte A ;Cuadles son los equilibrios de cada una de las matrices de pagos?

Parte B Escriba la matriz de pagos que resulta si nadie sabe cudl es la matriz elegida por la naturaleza.
Encuentre el o los equilibrios de Nash para esa matriz de pagos.

Parte C Si a Juan se le diera la opcién de ver cudl matriz ha sido elegida (y que Inés sepa si Juan observé

eso) jDeberfa Juan averiguar qué matriz ha sido elegida?

Problem 3.A Consider the following game. What is the equilibrium payoff of player 17
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I
Left Right

I Top 0, 1 2.2

Part B. Consider now the following game, in which Player I has more options (more choices, more strategies,

more possibilities). What is the equilibrium payoff of Player I? Is it larger or smaller than in Part A?

I
Left Right
Top 0, 1 2.2
I
Bottom 1, 2 3,-1

Part C. Could the reversal between Parts A and B happen when there is only one decision maker (i.e. can

more choices make you worse off in a single agent decision problem?)

Part D. Discribe (in no more than 5 lines) a situation in which a monopolist would be better off if he had

less options.

Ejemplo 6. El equilibrio de Nash en el juego de Cournot. Para encontrar el equilibrio de Nash
en este juego, debemos encontrar un par (g, ¢2) tal que g1 sea la mejor respuesta a ¢qa, y ¢2 sea la mejor

respuesta a ¢;. Es decir, (g1, ¢2) = [b1 (¢2) , b2 (q1)], 0, lo que es lo mismo,

(q1,92) = [b1 (b2 (q1)) , b2 (b1 (g2))] -

Por lo tanto, poniendo
la—b3 abaqi—cp =2 — ¢

q = 5 b
y operando obtenemos ¢; = (a + ¢y — 2¢1) /3b. En forma similar, go = (a + ¢; — 2¢2) /3b. Cuando crece el

costo marginal de la firma 1, la cantidad producida en equilibrio de la firma 1 se reduce, y la de la firma 2 au-

menta (no es que eso sea muy importante). Los beneficios de la firma 1 en equilibrio son (a — 2¢1 + ¢2)* /9b. B

Ejercicio 105 Variante del modelo de Becker de regulacién. Hay dos grupos de presién que tratan
de influir sobre el gobierno para que regule la economia en su favor. La presion se mide en cantidad de dinero
gastada en hacer lobby. Juegan el siguiente juego: I = {1,2} es el conjunto de jugadores; S; = R4 es el
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espacio de estrategias para los individuos ¢ = 1, 2; y si los individuos ejercen presiones (p1,p2) € Sy X S, las
utilidades son

uy (p1,p2) = I(p1,p2) —ap
uz (p1,p2) = 1(p2,p1) —bp2

donde I (x,y) = log (2x — y) es la influencia que tiene el grupo que invirtié x.

Parte A. Encuentre la funciones de reaccién para los grupos, y grafiquelas para a = b = 1.
Parte B. Encuentre el equilibrio de Nash de este juego. Le quedard como funcién de a y b.
Parte C. ;Qué pasa con los p de equilibrio cuando suben a o b? Muéstrelo usando los p de equilibrio, y

grafique las funciones de reaccién para los casos a =b=1ya=0=2.

Ejercicio 106 Tres individuos I = {1,2,3} deben votar por uno de dos candidatos, A o B. El candidato
con m4ds votos gana. El candidato A le da una utilidad de 1 a los votantes 1 y 2, y 0 al 3; el candidato B le

da una utilidad de 0 a los votantes 1 y 2 y 1 al 3.

Parte A. Escriba este juego en forma normal.

Parte B. Encuentre todos los equilibrios de este juego.

Parte C. Recuerde que una estrategia s; para el jugador ¢ es (débilmente) dominada si para algin s, € S;
sucede que

w; (8%, 8—;) > u; (si,s—;), para todo s_; € S_;

y la desigualdad es estricta para algin perfil s’ , € S_;. Encuentre las estrategias dominadas para cada
jugador.

Parte D. Si los jugadores sélo juegan estrategias que no estdn dominadas, ;hay algun equilibrio en que salga
electo B?

Ejercicio 7. Cada uno de I heladeros debe decidir en qué parte del intervalo [0, 1] colocar su carrito. En
cada punto z del intervalo, hay una densidad, o “cantidad”, f(z) > 0 de individuos. Cada heladero le
venderd a un individuo si y sélo si él es el heladero més cercano: cada individuo comprara un helado seguro,
y se lo compard al heladero que esté més cerca. Si k heladeros coinciden en su ubicacién, cada uno se llevara
1/k de los consumidores que atraiga esa ubicacién. Los heladeros quiere maximizar sus ganancias, y tienen
un costo de 0 por cada helado.

Parte A. Escriba este juego en forma normal.
Parte B. Encuentre el tinico equilibrio cuando I = 2.
Parte C. Muestre que no hay equilibrio cuando I = 3.

Ejercicio 8. Remates. Un objeto serd asignado a uno de I jugadores a cambio de un pago. La valuacién,
en términos monetarios, del objeto por parte del individuo i es v; con v; > vy > ... > vy > 0, con v;
conocidos. El mecanismo para asignar el objeto es un remate con sobre cerrado: los jugadores hacen ofertas
(nimeros mayores o iguales que 0) y el objeto es asignado al jugador con el “nombre” més chico, de entre
los que presentaron la oferta més grande, y éste debe pagar un precio.

Parte A. Remate de Primer Precio. En este tipo de remate el ganador debe pagar el precio que ofrecié.
Escriba el remate de primer precio como un juego en forma normal.
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Parte B. Muestre que en el remate de la Parte A, en cualquier equilibrio, el jugador 1 se lleva el objeto.

Parte C. Remate de Segundo Precio. En este tipo de remate el ganador debe pagar el precio més alto
dentro de los que no se llevaron el objeto, de tal manera que si nadie ofrecié el mismo precio que el ganador,
el ganador paga el segundo precio més alto. Escriba el remate de segundo precio como un juego en forma
normal.

Parte D. Muestre que en un remate de segundo precio hacer una oferta de v; es una estrategia débilmente
dominante para el jugador ¢ : su utilidad cuando ofrece v; es débilmente mayor que su utilidad cuando ofrece
cualquier otra cosa, independientemente de las acciones de los demds, y en algunos casos es estrictamente

mejor.

Parte E. Muestre que en el remate de segundo precio, para cada i = 2, ..., I hay un equilibrio en el cual el
jugador ¢ gana el objeto.

Ejercicio 107 El gobierno quiere construir un puente entre dos ciudades A y B. El costo del puente para el
gobierno es C, y si se construye el puente vale v4 > 0 para Ay vg > 0 para B. Asumimos que v4 +vg > C|
de tal manera que vale la pena construir el puente.

El gobierno no sabe cudnto vale el puente para cada ciudad (y tipicamente querrdn mentir para pagar
menos). Por lo tanto el gobierno anuncia que cada ciudad debe ofrecer una suma de dinero para pagar; la
ciudad 7 ofrece s;. Si s4+ sp > C, el puente se construye, y A paga C — sp (si sg < C, 0 0 en otro caso)
mientras que B paga C — s4 (si s4 < C, 0 0 en otro caso). Si s4 + sg < C, el puente no se construye. La
utilidad para una ciuadad es el valor del puente para ella, menos el pago que haga, si se hace el puente, o 0
de lo contrario.

Parte A. Escriba el juego en forma normal.

Parte B. Encuentre una estrategia dominante (y muestre que es dominante).

Ejercicio 9. Fudenberg y Tirole. Considere los siguientes juegos.

S» S2
I D 1 D
A 1,3 4,1 A -1.,3 2,1
S S1
B 0,2 3.4 B 0,2 3.4

Parte A. Demuestre que el panel de la izquierda se puede resolver por eliminacién iterada de estrategias
dominadas, y encuentre el tinico equilibrio. ;Qué utilidad recibe el jugador 1 en equilibrio?

Parte B. Muestre que el juego en el panel de la derecha (en el cual hemos reducido las utilidades para el
jugador 1 de jugar A) también se puede resolver por eliminacién iterada de estrategias dominadas. Encuentre
el tnico equilibrio de este juego. ;Qué utilidad recibe el jugador 1 en equilibrio? Explique por qué una

reduccion en la utilidad de jugar A beneficia al jugador 1.
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Ejercicio 10. Sea I = {1,2} el conjunto de jugadores; S; = R4 para i = 1,2 los conjuntos de estrategias y
para k > 1,
uy (s) =klog(er +e2) —er y wua(s)=log(er+e2) — ez,

para e; € S;, las funciones de utilidad. El juego representa la situacién de dos jugadores que alquilan un
apartamento, y deben usar su esfuerzo para limpiar. La higiene del apartamento es el logaritmo de la suma
de los esfuerzos, y a cada jugador le disgusta limpiar. Al jugador 1 le importa mas la higiene que al jugador
2.

Parte A. Encuentre las funciones de reaccién de ambos jugadores. Tenga cuidado con las esquinas. En
particular, ;cudl es la mejor respuesta de, por ejemplo, el jugador 2 si el jugador 1 decide poner muchisimo

esfuerzo en limpiar?
Parte B. Dibuje en el mismo par de ejes ambas curvas de reaccién, y encuentre el equilibrio grificamente.
Parte C. Demuestre que el equilibrio encontrado es tnico.

Ejercicio 11. Sean: I = {1,...,n} un conjunto de jugadores; S; = R4 para ¢ = 1,...,n los conjuntos de
estrategias y

n n
u; (s) =2 Zsj + Hsj — 57
j=1 j=1

las funciones de utilidad. Recordamos que una estrategia s; domina estrictamente a una estrategia s; si
para todo s_; u(s) > u(S;,s—;). Una estrategia s; es estrictamente dominante si domina estrictamente a
todas las demds estrategias s;.

Parte A. Suponga que 8 = 0, y encuentre la estrategia estrictamente dominante.
Parte B. Demuestre que la estrategia en la Parte A domina estrictamente a todas las demas.
Parte C. Demuestre que si 8 > 0 no existe una estrategia estrictamente dominante.

Ejercicio 12. Un equilibrio “estipido”. Considere el siguiente juego. Hay 2 jugadores, y el espacio de
estrategias para cada uno es S; = [0,100] . Cada uno debe nombrar un nimero, y la utilidad de ambos es el
producto de los dos nimeros. Es decir, u; (s) = s182.

Parte A. Encuentre los dos equilibrios de este juego.

Parte B. Encuentre todas las estrategias que son dominadas. Si dice que alguna estrategia es dominada,

demuestre su respuesta.

Parte C. Una estrategia s; es dominante si domina a todas las s; € S;. jHay alguna estrategia dominante?

Demuestre su respuesta.

Parte D. Si asumimos que los jugadores jugardn un equilibrio, pero uno que nadie use estrategias dominadas,
1 Qué jugarén?

Ejercicio 13. Considere el modelo de Cournot con 2 jugadores, demanda a — b (g1 + ¢2) y costos marginales

iguales a ¢. Suponga que las firmas deciden coludirse y producir en iguales cantidades, de tal manera de
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maximizar los beneficios conjuntos (es decir, se transforman en un monopolista). Calcule el nivel de producto
de monopolio (observe que es menor que el del equilibrio de Cournot). Suponga ahora que la firma 1 decide

violar el acuerdo, y la 2 no. ;Cuédnto producird la firma 1, y cuéles serdn los beneficios de ambas firmas?

Ejercicio 14. El siguiente juego es una variante del juego de Cournot, con I jugadores

I

I
Ty = {172,...,1},{R+}f:1 ) {Qi [a —b (Z‘h‘) - c] }

Parte A. Encuentre las funciones de reaccién (sea cuidadoso con las condiciones de segundo orden, y con

la condicién de borde ¢; = 0).
Parte B. Encuentre el equilibrio de Nash.

Parte C. ;Qué pasa con el precio de equilibrio cuando I — oco?
Existencia del equilibrio de Nash

Lo que aparece en estas notas es una versién ampliada de la demostracién de existencia en el trabajo de

Geanakoplos, “Nash and Walras Equilibrium via Brouwer,” que pueden encontrar en
www.cowles.yale.edu

en la parte de los discussion papers.
Hasta ahora, en todos los ejemplos que hemos visto, siempre existia al menos un equilibrio de Nash.
Puede suceder, sin embargo, que en un cierto juego no exista un equilibrio. El siguiente ejemplo, matching

pennies, es uno de ellos.

Ejemplo 15. En este juego, dos jugadores deben apoyar al mismo tiempo una moneda en una mesa. Si
coinciden en “ambas cara” o “ambas nimero”, el jugador 1 se queda con las monedas (gana $1). Si no
coinciden, gana 2. Formalmente, el juego es: I = {1,2}; estrategias S; = {C, N} i = 1,2; utilidad de 1,
uy (8,8) = —uy (s,t) = 1 para s,t € S;, s # t; utilidad de 2, us = —u;. En la siguiente matriz se representa
el juego, y se han eliminado los pagos del jugador 2, pues son el opuesto de los de 1 :

Jugador 2
Cara NUmero
Cara 1 -1
Jugador 1 Numero -1 1

Es bastante fdcil ver que este juego no tiene un equilibrio: para cada perfil de estrategias (s1, s2), si
$1 = $9, el jugador 2 quiere jugar su otra estrategia (es decir, no se cumple que us (s) > usz (s1,t) donde

t # s9); si 81 # $9, el jugador 1 querrd cambiar su estrategia. ll

El ejemplo anterior muestra que vale la pena preguntarse si hay alguna clase general de juegos en los
cuales uno pueda asegurar que existird un equilibrio. En particular, muchas veces nos planteamos modelos,
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y nos interesa saber qué propiedades tiene el equilibrio. Por ejemplo, en el modelo de Cournot, queremos
saber si un aumento en los costos aumenta el precio de equilibrio. Si no podemos calcular el equilibrio
explicitamente, muchas veces podemos decir “si hay un equilibrio, cuando sube el costo, sube el precio”. El
problema es que podemos estar hablando sobre algo que no existe. Entonces lo que tenermos que hacer es
asegurarnos que existe un equilibrio, y a ahf si, decir “en cualquier equilibrio, cada vez que suba el costo,
subird el precio”.

Antes de pasar al enunciado y demostracién del teorema de existencia del equilibrio de Nash, necesitamos
algunas definiciones. Para X C R™ para algin m, diremos que X es convexo si para todo =,y € X, y

a€[0,1], az+ (1 — @)y € X. Para una funcién f: X — R, donde X es un conjunto convexo, diremos que

foes:
céncava si para todo z,y € X, y a € [0, 1]
flaz+(1-a)y) 2 af(z)+(1—-a)f(y).
estrictamente céncava si para todo z,y € X,z Ay y a € (0,1)
flaz+ (1 —a)y)>af (@) +(1-a)f(y).
estrictamente convexa si para todo z,y € X, z Ay y a € (0,1)
flaz+(1-a)y) <af(z)+(1—-a)f(y).

La siguiente es una propiedad util para verificar la concavidad o convexidad de funciones. No la
demostraremos.

Lema. Para X C R, sea f: X — R una funcién cuya derivada segunda existe para todo z € X. La funcién
f es concava si y sélo si f7 (x) < 0 para todo z € X.

Ejercicio 16 Demostrar que si una funcién g : S — R, para S convexo y S C R/, es tal que g (s) = u(s) —
n (s) para una una funcién céncava u y una funcién estrictamente convexa n, entonces g es estrictamente

concava.

Ejercicio 17. Demostrar que si una funcién ¢ : S — R, para S convexo y S C R/, es estrictamente céncava,

entonces existe a lo sumo un tnico s* tal que

* j—
s = argmaxg (s).

Ejercicio 18. Demostrar que para 5 € R' para algin I, n (s) = le (sj — Ej)z es estrictamente convexa.

Ejercicio 19. Demostrar que si S; contenido en R" para algtin /; es cerrado, acotado (existe ¢ > 0 tal que
para todo s; € S; se cumple que ||s;|| < ¢) y convexo para todo i, entonces S = 57 X Sy... x St es cerrado,
acotado y convexo.

Para f: X — R con X CR! f es continua en z € X si para todo £ > 0 existe d. , > 0 tal que
le — 2| <bew = |f (2) — f(2")] <e.

Decimos que la funcién f es continua si es continua para todo x.
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Ejercicio 20. Suponga que para i = 1,2,...,I, G; es una funcién de S = S; x Ss... X S en S;, para S;
contenido en R para algtin [;. Sea G : S — S definida por G (s) = (G (s),G2 (), ..., Gr (s)).

Parte A. Muestre que paratodo z,y € S, |G (z) — G (y)| = \/HGl (@) = GLW)|* + ... + ||G1 (x) — Gr (v)||>-

Parte B. Usando la Parte A, muestre que si cada G; es continua, entonces G es continua. La idea es sencilla:

si se logra que cada G; (x) esté cerca de G; (y), entonces G (z) estard cerca de G (y) .

Ejercicio 21. Mostrar que una funcién f : X — R, X C R! es continua en z si y sélo si para toda secuencia
{zn} con z,, — x, se cumple que f (z,) — f (z) (Pista: cuando asuma que f no es continua en algin z para
demostrar que existe una secuencia {z,} tal que z,, — x, pero no se cumple que f (z,) — f (z), tome z,
tal que ||z, — z|| < 0, = 1/n).

Fl siguiente teorema es un caso particular de lo que se llama el Teorema del Méximo.

Teorema del M#ximo. Sean X C R Y CR™; f: X xY — R. Si f es continua y Y es cerrado y
acotado,

h(z) = ryneagf (z,y)

es una funcién, y si para todo z,
G)={yeY: f(zy)=h(2)} =argmax f(z,y)
es una funcién, entonces es continua.

Prueba. Como toda funcién continua en un conjunto cerrado y acotado tiene un méximo, para cada x,
h (x) estd bien definida (en el sentido que el maximo existe, y es un nimero, y no por ejemplo, o).

Demostraremos ahora que si G es una funcién, entonces es continua: que si z, — z, G (z,) — G ().
Como Y es cerrado y acotado, existe una subsecuencia de {G (z,)} que converge a algin y € Y. Por
simplicidad, continuamos llamando {G (x,)} a dicha subsecuencia. Queremos demostrar que y = G ().
Para ello, tomamos un z € Y cualquiera y vemos que por definicién de G,

J @0, G (20)) = f (€0, 2). (48)

Para demostrar que y = G (z), debemos mostrar que f (z,y) > f (z,2), por lo que supongamos que

flay) < flz2)
para llegar a una contradiccién (que f (z,y) > f (z,2) es “obvio” intuitivamente, si tomamos limites en (48)
y usamos la continuidad de f, pero lo vamos a hacer formalmente). Definamos

_f@e) - fay)

0.
5 >

Como f es continua, existen d, y J, tales que

d((zn, G (zn)), (2,y)) < by = |f (20, G (zn)) — f(2,9)| <& = [ (20, G (2n)) < f(2,y) +€
d((x’rL?Z)?(x?Z)) < 52 = |f(£L‘n,Z) —f(fL’,Z)| <e= f(CL’n,Z) > f(ZL‘,Z) —€

Usando estas dos ecuaciones y la definicién de €, tenemos que

f (@ G2a)) < ﬂaw+ﬂ%@;ﬂ%w:f@@;f@m

= f(z,2)— f(:c,z);f(:c,y) = f(z,2) —e < f(xn,2)
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lo que contradice la ecuacién (48). Para completar la demostracién, debemos mostrar que existen (x,,, G (z,))
y (zn, 2) tales que d ((@n, G (zn)), (z,y)) < 0y ¥ d((zn,2),(z,2)) < .. Pero eso se deduce del hecho que

Ejemplo 22. Sea f : R? — R definida por f (z,y) = —y? + 22y — 4. En este ejemplo X = Y = R.. Para
cada x, el y que maximiza f es y = z. Por lo tanto,

h(x) = I;lea;;(f (z,y) = 2% — 4.

Para cada z, el y que maximiza f es unico, por lo que G (x) es una funcién. El teorema del méximo nos dice

que debe ser continua. En efecto, vemos que G (z) = z es continua. ll

Ejercicio 23. Parte A. Sean X =Y = [0,1] y f(z,y) = —y? + xy. Encuentre G (x) (observe que es
continua).

Parte B. Repita la Parte A para f (z,y) = — (y + 5)

Teorema de punto fijo de Brouwer. Sea S C R” para algiin n, un conjunto cerrado, acotado y convexo,

y sea G : S — S una funcién continua. Entonces G tiene un punto fijo, es decir, existe un s tal que G (s) = s.

Para ver que cada uno de los supuestos cumple algtin rol relevante vemos que si no pedimos que S sea
cerrado, f: (0,1) — (0,1) definida por

no tiene punto fijo. Si no pedimos que S sea acotado, tenemos que f : Ry — R definida por f (z) =z +1
tampoco tiene punto fijo. Si no requerimos que S sea convexo, vemos que f : {0,1} — {0,1} definida por
f(x) = 1 — x tampoco tiene punto fijo. Finalmente, si G es discontinua, tenemos que G : [0,1] — [0,1]

G(x):{ L zs

0 x>

definida por

N[ =

tampoco tiene punto fijo.

Ahora enunciamos y demostramos el resultado principal de estas notas. Sea I' = |1, {5}, ui}le} un juego
entre I jugadores, en el cual .S;, el espacio de las estrategias para el jugador i, es un conjunto cerrado, acotado
y convexo contenido en R para algin [;. Asumamos también que u; es continua para todo i. Diremos que
I' es un juego céncavo si para todo i, y todo s_; € S_; = I1,;S;, u; (s;,5—;) es céncava en s; : para todo
$i,8; €5; y @ €]0,1] tenemos que

w; (asi + (1 — @) 55, 8-4) > au (85, 5-) + (1 — a) u; (85, 5-4) -
Teorema (Existencia del equilibrio de Nash). Todo juego céncavo tiene un equilibrio de Nash.
Prueba. Definamos G; : S — S; mediante
Gi (31,52, ...,51) = arg max [ui (s:,5=) — llsi — 51|

donde ||s||2 = le s? para s € R!. Esta funcién nos da, para un perfil de estrategias 5, la “mejor respuesta”
del jugador 7. No es la mejor respuesta “en serio” porque a la utilidad se le resta un término de distancia entre
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la estrategia “candidata” s; y aquella con la que “se empezd” 5;. Es decir, se trata de mejorar la utilidad,

pero sin moverse demasiado: se penalizan los movimientos del status quo ;.

Paso 1: demostrar que G; es en efecto una funcién. Para ello debemos demostrar que para cada 3 existe
un y s6lo un s; que maximiza u; (s;,57;) — ||s; — 53||>. La existencia de al menos uno se deduce del hecho
que u; (8;,5—) — ||si — s_l||2 es una funcién continua de s;, y que S; es cerrado y acotado. Que es sélo uno se
deduce del hecho que u; es concava, y ||s; — 5;||” es estrictamente convexa en s; (ver ejercicios 16, 17 y 18).

Paso 2: demostrar que (G; es continua para todo i. Para hacer esto, usaremos el Teorema del Méximo.
Tenemos que u; (si,5=;) — ||s; —55||> es continua en (s;,3) (aca s; es el equivalente de z en el Teorema del
Méximo, y 3 el equivalente de y), y también que S es cerrado y acotado. También sabemos por el paso 1

que G; es una funcién. Entonces, tenemos que G; es continua.

Paso 3: demostrar que G : S — S definida por G (s) = (G (s), G2 (8),...,G1 (s)) tiene un punto fijo. Esto
se deduce inmediatamente del Ejercicio 20 y del teorema de punto fijo de Brouwer, pues se cumplen todas
sus hipétesis.

Paso 4: demostrar que si S es un punto fijo de G, entonces S es un equilibrio de Nash. Supongamos que no
lo es, es decir, que existe algun i, y alguna estrategia s; tal que wu; (s;,5—;) > u; (3). En ese caso tenemos
que para todo € € (0,1)

w; (g5 + (1 —€) 53, 5-5) — |lesi + (1 — &) 5 — 53 u; (55,5-3) + (1 — &) w; (55,5—) — |les; — 54|

v

= i (3:,557) + e [wi (51,5-1) — wi (56, 5-5)] — 2 |5 = 54>
Por lo tanto, si
wi (84,5-) — u; (5;,5-;)

Isi =52

e<
obtenemos que
wi (es; + (1 —€)55,5-) — llesi + (1 — &) s — il > we (54,5-4) = w; (53,5-3) — |57 — 5i)° (49)

lo que contradice que 5 es un punto fijo de G. Si lo fuera, tendrfamos G (5) =3, y por tanto, G; (5) = 3;, o
lo que es lo mismo,

Gi(5) = argmax [uZ (si,5=0) — |lsi —S_in} =3; &

8

Y]

w; (36,55 — ||s: — 5| u; (5;,55) — ||5: — 5i||* para todo 5; € S;.
En particular, debemos tener que para s; =¢es; + (1 —¢)s;
wi (36,555) — I5i = Sill* > wi (ess + (1 — €)55,55) — |lesi + (1 — )5 — 53|

lo que contradice la ecuacién (49). W

La funcién G utilizada en la demostracién del teorema es un sustituto de la “funcién” que se usa habit-

ualmente para encontrar equilibrios, que es la “funcién” de mejor respuesta. Definimos

B (s) = arg maxu (,5-1)

como el conjunto de las mejores respuestas de ¢ cuando los demds juegan s_;. Si para cada s_; la mejor

respuesta es unica, B; es una funcién. Si para algin s_; hay dos estrategias para el jugador i que son éptimas,
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entonces B; ya no es una funcién, sino una correspondencia. Las correspondencias le asignan a cada elemento
de su dominio, un subconjunto del codominio. B; es la correspondencia de mejor respuesta.
Definimos ahora la correspondencia de mejor respuesta agregada B : S = S (esa es la notacién

para una correspondencia) mediante
B(s) = (Bi(s), .., B (s))-

La utilidad de esta correspondencia es que los los puntos fijos de esta correspondencia son los equilibrios de
Nash del juego. Un punto fijo para una correspondencia es un s tal que s € B (s). En el caso particular de
la correspondencia de mejor respuesta agregada, si s es un punto fijo, quiere decir que para cada i, s; es una
de las mejores respuestas cuando los demds juegan s_;. Vemos entonces lo que deciamos antes: los puntos
fijos de B son los equilibrios de Nash.

Otra forma 1til de trabajar con las mejores respuestas es la siguiente. Asumamos que B; es una funcién
(y no una correspondencia). Si By (Bs (s1)) = s1, entonces (s1, B (s1)) es un equilibrio de Nash. Esto es lo
que se hace en general para resolver el juego de Cournot. Se iguala la funcién de mejor respuesta del jugador
1 a ¢ y se sustituye la mejor respuesta del jugador 2 en el lugar de g». Despejando se encuentra ¢;.

Ejercicio 24. Para los siguientes juegos

I = {{172}7{R+7ui($1732):$1sz}ﬂ
Ly = [{172}7{R++7ui (81752)28182}3}

determine:
Parte A. Si existe o no un equilibrio de Nash.
Parte B. Si se aplica el teorema de existencia de equilibrio visto en clase.

Ejercicio 25. Existencia de un equilibrio de Nash en un modelo de Cournot. Hay dos firmas, con costos
marginales ¢. Cada una debe elegir un nivel de produccién ¢; € [0,1], y enfrentan una demanda continua
p(Q) tal que p’ <0y p” <0, donde Q = ¢1 + go. Los beneficios de la firma 4 son,

g p(g+q)—d.

El juego en forma normal es

'y = {{172} AL0,1],qi [p (@1 + q2) — C]}le} .

Demostrar que existe un equilibrio de Nash.

Ejercicio 26. Bertrand. Hay dos jugadores, con espacios de estrategias S; = Sy = [0, 10]. Las funciones
de utilidad son
S; (20 — Si) 5; < 8j
ui (s) =4 35,(20—s;) s;=s,
0 Si > 8
Este juego corresponde a una situacién en que las firmas eligen un precio (esa es su estrategia) y la firma
que elige el precio menor enfrenta toda la demanda del mercado, que estd dada por ¢ = 20 — p (y los costos
marginales son 0).
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Parte A. Muestre que s; = 0 es una estrategia dominada.
Parte B. Muestre que ningin precio mayor que 0 es dominado.
Parte C. Encuentre el tinico equilibrio (encuentre un equilibrio y muestre que no hay ningin otro).

Ejercicio 27. Decimos que una estrategia s; domina débilmente a otra s} si para cualquier combinacién
de las estrategias de los demds, a s; le va débilmente mejor que a si: w; (s;,5-;) > w; (85, 5—;) para todo
s_; € S_;. Una estrategia es débilmente dominante si domina débilmente a todas las demds estrategias
s} del jugador i. Demuestre que si un jugador tiene dos estrategias débilmente dominantes s; y s}, para
cualquier perfil s_; de estrategias de los demads, u; (s;,5—;) = u; (8}, 5-;) .

Ejercicio 28. En una planta nuclear, para que haya un accidente, deben fallar una maquina (que falla con
probabilidad p,,) y cada uno de n individuos. La probabilidad de que cada individuo falle, si invierte un
esfuerzo de e, es p = (1 —e)” para a > 1. La utilidad esperada del individuo i para un perfil de esfuerzos

e=(e1,€2,...,e,) €s
j=n

u; (€) = —pmD H p(e;) —e;

=1

donde D es el dano.
Parte A. Encuentre el tnico equilibrio simétrico (todos juegan lo mismo) de este juego.
Parte B. Muestre que cuando n sube, sube la probabilidad total de accidente en el equilibrio.

Ejercicio 29. Hay dos firmas, cada una puede elegir un nivel de producto ¢ € R4, la demanda viene dada
por p =10 — g1 — g2 y los costos son ¢(q) = ¢>.

Parte A. Encuentre las funciones de reaccién de las firmas.
Parte B. Encuentre el equilibrio de Nash.

Ejercicio 30. Hay 3 firmas, cada una puede elegir un nivel de producto ¢ € R4, la demanda viene dada
por p = 120 — 2Q y los costos son ¢; (¢) = 10 + ig?®.
Parte A. Encuentre las funciones de reaccién de las firmas.

Parte B. Encuentre el equilibrio de Nash.

Ejercicio 31. Hay dos individuos ¢ = 1,2 que deben ejercer un nivel de esfuerzo e; € R, . El individuo no
quiere esforzarse ni mas ni menos que el otro (un cierto sentido de justicia), por lo que su utilidad contiene
un término — (e; — 62)2 . Por otro lado, el esfuerzo del otro hace més productivo mi esfuerzo, por lo que las
utilidades también contienen el término e;es. Finalmente, hacer un esfuerzo e; le cuesta e; al individuo i. Por
tanto las utilidades son u (e1,e2) = ejes — (e1 — 62)2 —e1 yus(er,ex) =eres — (e — 62)2 — es.. Encuentre

el equilibrio de Nash.

Ejercicio 108 Basado en el paper de Cornes del Quarterly Journal of Economics de 1993.
Suponga que hay k individuos y que cada uno posee m unidades de un bien. El individuo debe distribuir sus
unidades entre lo que consume y, y lo que dona ¢ para un bien ptblico. La cantidad total del bien piblico
es Q = Zlf g;- La funcién de utilidad de cada individuo es u (y, Q) = yQ.
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Parte A. Escribir este juego en forma normal.

Parte B. Encontrar el nico equilibrio de Nash en que ¢; = g; para todo ¢ y j.

Parte C. Encuentre la tnica asignacién Pareto Optima. Esto es, hay que maximizar la utilidad del individuo
1, sujeto a la cantidad de bienes que hay en la economia, y que las utilidades de los otros individuos sean
mayores o iguales que u;.

Parte D. Muestre que el ratio entre la cantidad en el equilibrio de Nash, y la cantidad en la asignacién
Pareto Optima decrece con el nimero de individuos (el problema de free riding se agrava cuando crece la
poblacién).

Ejercicio 109 Cada uno de dos vecinos debe elegir cudnto trabajar; un trabajo ¢; le reporta un ingreso t;
al individuo ¢ (el trabajo ¢; puede ser cualquier niimero ¢; > 0). El problema es que cuanto mds plata tiene
el vecino, menos la disfruta él. Tomando en cuenta el costo del esfuerzo (que es t?), las utilidades son,

Encuentre el, o los, equilibrios de este juego.

**el préximo no usado**

Ejercicio 110 Este es un ejemplo de la tragedia de los comunes. Hay dos granjeros que pueden poner sus
cabras en un terreno comun. El granjero i elige el nimero de cabras g; para poner en el terreno comin. El
valor de mercado de cada cabra es una funcién v (g1, g2) = 120 — g1 — g2 que depende del niimero de cabras
en el terreno (cuantas mds cabras, menos vale cada una pues puede comer menos). El costo de comprar g
cabras para cada granjero es cg.

Parte A. Plantee el juego en forma normal.

Parte B. Encuentre el equilibrio de Nash.

Parte C. Encuentre el nimero éptimo de cabras que elegirian tener conjuntamente los dos granjeros para
maximizar el valor de la suma de las cabras (menos el costo de adquirirlas). Compérelo con la cantidad total
de cabras de la Parte B.

Parte D. Si hubiera tres granjeros, y el valor de las cabras fuera v = 120 — g; — g2 — g3, jcudl seria el
equilibrio de Nash?
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Soluciones

2
2p1—p2
pi (p2) = %p2+%. El individuo 2 debe elegir p, para maximizar log (2p2 — p1)—bpa, y queda p5 (p1) = %p1 +%.

a=0<

Ejercicio 105. Elindividuo 1 debe elegir p; para maximizar log (2p1 — p2)—ap1, que arroja

El equilibrio se da cuando p; = % (%pl + %) + % Spl = 3;‘; + % yp; = % + %

Queremos ver cémo cambia el equilibrio cuando cambia uno solo de los costos de hacer lobby (el a
representa cudnto se pierde en la actividad de hacer lobby). Vemos que cuando sube a el individuo 1 es
menos agresivo (su funcién de reaccién cae), y lo mismo para el individuo 2 cuando sube b.

Ejercicio 106.A. Los jugadores son I = {1,2,3}, S; = {A,B} y u1 (s) = uz(s) =1 —wus(s), con

0 en caso contrario

up () = { 1 se{(A,AA),(A4,A,B), (A B,A),(B A A)}

Otra forma de representar los pagos es, con (ug, us, u3) en cada celda,
83:A 83:B

82:A 82:B 32:14 SQZB

ss;=A 1,1,0 1,1,0 y s3=A4 1,1,0 0,0,1

ss=B 1,1,0 0,0,1 ss;=B 0,01 0,0,1

106.B. Los equilibrios son (A, A, A), (A, A, B) y (B, B, B): a nadie le va mejor desvidndose (en los casos
(A, A, A) y (B, B, B) porque no cambiaria nada, en el caso (A, A, B) porque 1 y 2 estdn jugando su mejor
respuesta y 3 también). En los demds casos: si sale A electo, es porque 3 lo estd votando y podria cambiar
el resultado; si B sale electo, 1 o 2 podrian cambiar el resultado.

106.C, D. Para los jugadores 1 y 2 la estrategia B estd dominada, mientras que para 3 la A estd dominada:

U1 (A7A7B) > Uy (BaA7B)7u1 (A,B,A)>U1 (BaB7A)7 Ul (A7A7A)2u1 (BaA7A) y ui (A7B7B)2u1 (B7B7B)
us (A7A7B) > U3(A,A,A),U3(A,B,B)>U3(A,B,A), us (BaA7B) >U3(B,A,A) y us (B,B,B)ZU{g(B,B,A .

~—

Por lo tanto, el tnico perfil de estrategias en que nadie juega estrategias dominadas es (A, A, B), es un

equilibrio, y no se elige a B.

Ejercicio 108.A. El conjunto de individuos es I = {1,2,...,k}, y el espacio de estrategias es S = [0,m], ya
que los individuos eligen cuénto ¢ donar en ese intervalo. Las utilidades son u; (s1, ..., 5;) = (m — s;) Zlf S;.
108.B. Volviendo a la notacién de la letra del problema, el individuo debe elegir y, ¢; para maximizar

. : Dzl m
Yy (Z#i q; + qi) sujeto a y + ¢; = m < elegir y para max y (Z#i q; +m — y) Y= J#f
En el equilibrio simétrico ¢; = g para todo 4, y por lo tanto y = W. Si usamos esto en la restriccion
presupuestal queda
(k — 1) g+m m Nash k
y+a 2 e 1=rr1 ¢ kit 1

108.C. El “planificador” debe elegir Q, {yz}]f para maximizar y1@Q sujeto a y; = km — Zg yi — Q y que
¥:Q = u; parai = 2, ..., k. Queda entonces y; = km—>_ % — @ y por tanto hay que elegir () para maximizar

k

nQ = (km—z

km
2

Qs

2

_ Q) Q = QPareto _
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108.D. Tenemos
QY k41

N — _k

que crece con k.
2t

Ejercicio 109. El individuo 1 debe elegir ¢; para maximizar Sl t2, que tiene como condicién de primer
orden t1to = 1, que es la misma que la condicién de primer orden del individuo 2. Por lo tanto, cualquier
combinacién (positiva) de ¢; y t3 con t1t3 = 1 es un equilibrio. La interpretacion es que si, por ejemplo, el
t, = % y to = 10, el 10 trabaja mucho, y eso hace que el esfuerzo de 1 no le sirva (a 1) para mucho, entonces
se esfuerza poco, que hace que al 2 le rinda mucho (en utilidad) su dinero.
Ejercicio 4. Sea s el unico perfil de estrategias que sobrevive la eliminacién iterada de estrategias dominadas
y supongamos que no es un equilibrio de Nash del juego original, y que por tanto existe algin jugador i que
tiene una estrategia s, tal que

wi (sh,8-3) > i (s4,5-;)- (50)
Como s} fue eliminada en algin paso por alguna estrategia s, debfamos tener que para todas las estrategias

de los contrarios que atin no habian sido eliminadas, s”, (entre las que se hallaba s_;) debiamos tener

u; (s,8";) > u; (s}, 8”;), y en particular w; (s, s_;) > u; (s}, s—;). Si s; = s/, tenemos una contradiccién
con la ecuacién (40), por lo que supongamos que s # s;, y que por lo tanto, s/ fue eliminada por alguna
estrategia s3 en algin paso siguiente. Es decir, para todas las estrategias de los contrarios que atin no habfan
sido eliminadas, s ; (entre las que se hallaba s_;) debfamos tener u; (s3,5%;) > u; (s, s%;), y en particular
u; (sf’, s,i) > w; (s,5_;) > u;(s},s_;). Si s3 = s; obtenemos una contradiccién con la ecuacién (40), por lo
que supongamos que s; # s;. Este proceso se termina en algin momento, pues hay una cantidad finita de
estrategias. Por lo tanto, habrd algin n para el cual s} = s; que eliminé a s?‘l, y para el cual se cumplia
u; (87, 8-4) > w; (3?71, s,i) > u; (s}, s-;). Como esto contradice la ecuacién (40), se demuestra que s es un

equilibrio de Nash.
Ejercicio 5.A. El equilibrio en la primera matriz es (A, D) y en la segunda (B, D).

5.B. Si Juan juega A e Inés I, con probabilidad %, Juan recibe 11, y con probabilidad % recibe —1. Por tanto,
si no se sabe qué matriz ha salido, la utilidad de Juan de jugar A cuando Inés juega I es 5. Procediendo de
esa manera obtenemos que

UJ(A,I) = 'LLJ(B,I):U](A,I)ZUI(B,I):5
UJ(A,D) = uJ(B,D):uj(A,D):u[(B,D)zl
y los equilibrios son (A,I) y (B,I).

5.C. Si Juan observa qué matriz ha sido elegida, Inés piensa: si juego I, recibo —1 seguro, porque Juan
elegird A si fue la primera matriz, y B si fue la segunda; en cambio, si elijo D, recibo 1 seguro. Por lo
tanto, Inés jugard D, y ambos recibirdan 1. En cambio, si Juan no observa qué matriz ha sido elegida, ambos
recibirdn 5. Lo “raro” de este juego, es que Juan no quiere obtener informacién. La razén, es que obtener
informacién en este caso, cambia el comportamiento estratégico de Inés.

Ejercicio 8.A. El conjunto de jugadores es I = {1,2,..,1} y para cada uno, su conjunto de estrategias es
S; = R. Las funciones de utilidad son
S; > SjVj #1
v; —8; Si o)
u; (s) = . .
s; =maxs; e 1 < j para todo j con s; = s;

0 en otro caso
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8.B. Supongamos que en algiin equilibrio el objeto se lo lleva algin jugador ¢ # 1. Para que eso sea un
equilibrio, debemos tener v; > s;, ya que el jugador ¢ siempre puede asegurarse una utilidad de 0. El jugador
1 podria ofrecer v;, ganar el objeto y obtener una utilidad estrictamente positiva v; — v;, lo que constituye
una contradiccién, ya que el jugador 1 estaba obteniendo en el “equilibrio” propuesto una utilidad de 0.
Algunas veces, al intentar resolver este ejercicio, la gente hace algiin razonamiento y concluye “por lo
tanto, en cualquier equilibrio debemos tener que para cada jugador j, v; > s;.” Esto es falso. Hay un

equilibrio en el cual s; = ”1;“2 para todo 4.

8.C. El conjunto de jugadores es I = {1,2,..,1} y para cada uno, su conjunto de estrategias es S; = R.
Definimos

$_; = maxs;
J#i

como el méximo de las ofertas de “los otros” jugadores. Las funciones de utilidad son

S; > SjVj #1
v; —S_; Si o)
u; (s) = _ . .
s; =5_; €1 < j para todo j con s; = s;

0 en otro caso

8.D. Ofrecer v; domina a s; para v; > s; pues si 5_; > v; 6 8; > S_;, la utilidad de ambas ofertas es la
misma (en el primer caso ambas ofertas pierden, en el segundo, ambas ganan y pagan s_;), mientras que
si v; > 5_; > s;, una oferta de v; es estrictamente mejor que una de s; pues gana el objeto y obtiene una
utilidad estrictamente positiva, mientras que s; lo perderia (ignoramos el caso en que s; = 5_; pues no aclara
nada y es complicado de analizar por el tema de los subindices). En forma similar, ofrecer v; domina a s;
para s; > v; pues si 5_; > s; 6 v; > 5_;, la utilidad de ambas ofertas es 0, mientras que si s; > 35_; > v;, una
oferta de v; es estrictamente mejor que una de s;, pues con s; se gana el objeto, pero se obtiene una utilidad

estrictamente negativa, mientras que ofreciendo v; se obtiene 0.
8.E. Para G > v; vemos que el perfil de estrategias en que s; = G y s; = 0 para todo j # ¢ es un equilibrio.

Ejercicio 107.A. El conjunto de jugadores es {A, B}, y las estrategias son S4 = Sp = R = [0, +00). Las

utilidades son

vga —max{C —sp,0} sa+sp>C

0 en otro caso 0 en otro

us(sa,88) = { y up (sa,885) = {
107.B. La estrategia dominante para i es ofrecer v;. Analizamos el caso de A, el de B es similar y se omite.
Si C < sp, la utilidad de ofrecer v4 es la misma que la de ofrecer cualquier otro s4 (es va, pues se construye
el puente y A no paga nada). Si C —vy < sp < C, ofrecer vy lleva a la construccién del puente (pues
spFva > (C—v4)+va=0C)ylautilidad es vy — (C —sp) = sp — (C —wv4) > 0; elegir cualquier otro
sa # va sélo cambia algo si no se hace el puente (siempre que se hace, paga lo mismo), y en ese caso la
utilidad seria 0. Por lo tanto otra vez no hay nada mejor que ofrecer v4. Si sgp < C' — vy, ofrecer vy lleva a
que no se construya, y da una utilidad de 0. Cualquier otra oferta que lleve a que no se construya también
da 0 (y por tanto no es mejor que v4), y si ofrece sy > C — sp el puente se construye y la utilidad es
UA—(C—SB)<0.

Ejercicio 10.A. En el caso del jugador 1, si es > k la mejor respuesta es by (e2) = 0. De otra manera, la
mejor respuesta es by (ea) = k — es. En forma similar, para el jugador 2 la mejor respuesta es la misma que
la del jugador 1 reemplazando k por 1.
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10.C. El tnico equilibrio es cuando e = (k,0). Para ver eso, notamos que no hay otro con es = 0, ya que
eso implica necesariamente que e; = k (porque 1 juega su mejor respuesta). Por otra parte, si hubiera algin
equilibrio con e; = 0, tendriamos (de la mejor respuesta de 2) que es = 1, que implica asu vez e; = k—1 > 0,
lo que es una contradiccién. Por lo tanto, si hubiera otro equilibrio, tendria que ser con e; > 0y ez > 0
y eso implica necesariamente que se cumplen las condiciones de primer orden con igualdad: ey = k —es y
es = 1 — e1. Sustituyendo obtenemos k = 1, lo que es una contradiccién.

Ejercicio 11.A. Derivando e igualando a 0 obtenemos s” = 1.

11.B. Sea s; una estrategia cualquiera para el individuo i. Tenemos que para cualquier perfil de estrategias
s_; de los oponentes,

U; (le,s_i) =2 SzD‘FZSj —SZDQ:25?—1—225]-—s?2>25i+225j—sf:ui(s)
J#i J#i J#i

para todo s; # sP pues 2sP — sP? > 25, — 52,

11.C. Supongamos que s” es la estrategia estrictamente dominante para todos los jugadores. La estrategia
que maximiza la utilidad cuando s; = 0 para todo j > 1 es s = 1, por lo que debemos tener sP = 1.
Supongamos ahora que todos los jugadores j > 1 juegan 1. En ese caso, jugar 1 da una utilidad de 2n+ 5 —1,
mientras que jugar 1+ /2 da una utilidad de 2n+ 8 — 1+ %2, por lo que no hay una estrategia dominante.

Ejercicio 13: El problema es elegir ¢ para maximizar (a — bg — ¢) ¢. La solucion es

1(a—c?
4 b
la—c

con q = 547<. El producto de equilibrio en el caso de Cournot es %a;c > s4=¢

5 -

N

Si la firma 1 decide desviarse, produciréd
b a—c\_3a-—c
"\ )8 b

o)

N2
que son mayores a %L?L (la mitad de los beneficios de coludirse).

Los beneficios de la firma 1 serdn

Ejercicio 14.A. El jugador 1 elige ¢; para maximizar su utilidad. Llamando @_; = Zj# g;, obtenemos
que la condicién de primer orden es

I

a—b qu —c—bgi=0&a-b(gi+Q_i) —c—bg; =0 q =
j=1

a—c—bQ_;
20 ’

La derivada segunda de la funcién objetivo es —2b, por lo que la condicién de primer orden es necesaria y

suficiente para un éptimo interior. Si a — ¢ < b@_; el g; éptimo es 0. La funcién de reaccion es entonces

a—c—bQ_; —
2b Q—i Z abc
0 Q<

ri (Q—i) =
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14.B. El equilibrio simétrico se da cuando

a—c—b(I—-1)q a—c

g=ri(I-1)q) & q= % @qzm.

No hemos descartado otros equilibrios, pero eso se puede hacer. En particular, el juego se puede resolver
por eliminacién iterada de estrategias dominadas.

14.C. El precio de equilibrio es

a—c a+Ic
P=a=b qu R T S e

Cuando aumenta la competencia, el precio se acerca al costo marginal.

Ejercicio 16. Debemos demostrar que para todo z,y € S, x #y y o € (0,1)

glaz+(1-a)y)>ag(@)+(1-a)g(y).
Tenemos que para todo z,y € S,z Zyy a € (0,1)

glaz+(1-a)y) = ulaz+(1-a)y

~—

—n(az+(1-a)y)
Ju(y) —n(ax+(1-a)y)
(convexidad estrictan) > oau(z)+ (1—-a)u(y)—an(z)+ (1 —a)n(y)
ag(z)+(1-a)g(y).

IS

(concavidad ) > au(z)+ (1 -«

Ejercicio 17. Asumamos que existen s* y x, con s* # x, que maximizan ¢ (con lo cual, en particular,
g (s*) = g (z)). Tenemos que para « € (0,1)

glas"+(I-a)z) > ag(s’) + (1 -a)g(x) = g(s7)

lo que contradice que s* maximiza g.

Ejercicio 18. Tenemos que para s Zz y a € (0,1),

n(as+(1—azx)) = (a3j+(17a)xj7§j)2

l

>
1
l

= D (a(s;—5) + (1 —a)(z; —355))

1

> (Oé (55 =5 + (1 —a) (25 —5;))" —a(1—a) (s; — xj)z)
1

!

= om(s)+(1—a)n(x)fa(1fa)2(sj
1

< an(s)+(1—a)n(x)

Ejercicio 19. Cerrado. Tomamos una secuencia {s"} en S tal que s" = (s7,...,s7) — s = (s1,...,51) .
Debemos demostrar que s € S. Como s™ € S para todo n, s} € S; para todo n. También, como s™ — s,
para todo € > 0, existe N tal que para todon > N,

e>||s" —s| = \/||5? —s1l® 4 llsg — sall* + .+ llsf — sl > \/||S? =il = lls? — sl

188



por lo que debemos tener que s} — s;. Como S; es cerrado, tenemos que s; € S;. Deducimos entonces que
s € S como querfamos demostrar.

Acotado. Como S; es acotado para cada i, existe un M; tal que ||s;|| < M; para todo s; € S;. Tenemos
entonces que para todo s € S, definiendo M = \/M? + M3 + ... + M? tenemos

sl = /st + llsall® + o+ llsr > < /M7 + MZ + ..+ MF = M
por lo que S es acotado.

Convexo. Tomamos z e yen Sy A € [0,1]. Como S; es convexo para todo i, tenemos que Az; +(1 — A)y; €
S;, por lo que
MM+ 1-Ny=Az1+ (1 =N y,..., \xer + (1 =N yr) €8S.
Ejercicio 20.A. Para cada G; tenemos que G; (z) = (G}, G?, ..., G?) ycomo G (z) = (G (2),Ge (1) ,...,G1 ()
obtenemos

I

BN
H

6@ -Gl = | (61 ) - i) +- +Z(G] ~aw)
j=1
: J=l 2 Jj=l 2
= Z(G{'(x)fG{(y))z o [ (G -ciw)
=1 j=1
= G @) = G @I + o+ 1Gr (@) — Gr W)

como querfamos demostrar.

20.B. Como cada G; es continua, para 5/\/7 existe d; tal que

lz—yll <di=|Gi(z) — Gi(y)l < %

Dado ¢, existe 6 = min; §; tal que

lz—y| < 6:»||Gi<x>—Gi<y>|\<% Vi =

IG (@) - G W)l = ¢||G1 @I+ -+ |G1 () — Cr ()2

< 7++7:€

como querfamos demostrar.

Ejercicio 21. =) Asumimos que f es continua y debemos mostrar que z, — x implica f (z,) — f(z).
Asumiendo continuidad de f y z, — x, debemos mostrar que para todo ¢ > 0 existe N; tal que n > N,
implica |f (z,,) — f (2)] <e.
Como [ es continua, para el ¢ elegido, existe un d. tal que ||z’ — z| < d¢ implica |f (z') — f(z)] < e.
Como z,, — z, dado el 0. encontrado, existe Ns_ tal que n > Nj_ implica ||z, — z|| < d.. Fijando entonces
N, = N;_ vemos que

B> N. = N, = llon — 2l < 6. = | () — £ ()] < 2

como querfamos demostrar.
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<) Asumimos ahora que x,, — x implica f (z,,) — f (x) y debemos mostrar que f es continua, es decir, que
para todo £ > 0 existe d. > 0 tal que

o —a'| <de = |f (z) = f (@) <e.

Si f es discontinua, existe un € tal que para todo §, hay algin 2’ tal que |z — 2’| < d pero |f (x) — f (2/)] >
¢. Construiremos ahora una secuencia {z,} que cumple las siguientes propiedades: x,, — z; f () — f (x);
para todo n, |f (z) — f (z,)| > €. Eso constituye una contradiccién, ya que para n “grande” deberfamos
tener |f (x) — f (zn)| < e.

Para construir la secuencia {x,,}, para cada n, tomamos cualquier z,, tal que ||z, — z|| < 1/n pero

[f (@) = f(zn)| Z & (51)

Como f es discontinua, tal z,, siempre existe. La secuencia que formamos asi converge a x, y por lo tanto,
f(xn) — f(x). Por eso, para el € dado, existe un N tal que n > N implica |f (z) — f (z,)| < €, lo que
contradice la ecuacién (51).

Ejercicio 23.A. Tenemos

X
G (z) = arg rzfleagf (z,y) = 5

que es continua.
23.B. Queda G (z) = \/z

Ejercicio 24.A. En I'; el unico equilibrio es (s1,s2) = (0,0). Es un equilibrio porque para so = 0 cualquier
$1 maximiza, y en particular s; = 0 maximiza. Similarmente para 2. Es el tinico, porque si s; > 0, no existe
una mejor respuesta.

En I's no hay equilibrio (por la misma razén que en I'y no hay equilibrio con s; > 0).

24.B. I'; no es un juego céncavo, pues R} no es acotado. Obviamente, I'y no es un juego céncavo, pues si

lo fuera tendrfa un equilibrio. Lo que falla es que R4 no es ni cerrado ni acotado.

Ejercicio 25. Una forma de hacer este ejercicio, es demostrando que el juego es un juego céncavo, y aplicar
el resultado de existencia de Geanakoplos. Para demostrar que es un juego céncavo, debemos verificar que
los espacios de estrategias son convexos, cerrados y acotados, y que la funcién de utilidad (de pagos, de
beneficios, o como quieran llamarla) es céncava en la estrategia propia.

Verificar que los espacios de estrategias son convexos, cerrados y acotados es trivial, pues son, para cada
jugador, el intevalo [0, 1]. Para verificar que los pagos son céncavos, tomaremos derivadas (no es necesario

hacerlo con la definicién de concavidad, pues la funcién es diferenciable):

d(q[p(q1 4 q2) — ¢])
dqy
d? (q1 [p (q1 + q2) — ¢})
dgi1dq

= pla+aq)—ct+ap (@+q)

= 2 (n+@)+ap (¢+q¢)<0

como querfamos demostrar.

Ejercicio 29.A. La firma 1 debe elegir ¢; para maximizar ¢; (10 — ¢; — g2 — ¢1) que arroja

5 1

1 (q2) = 3~ 1%
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y en forma similar, 73 (¢1) = 3 — %Ch-

29.B. Debemos tener g1 =71 (¢2) ¥ ¢2 = 2 (q1) , 0 lo que es lo mismo,

I N SO T
Q1f2 1\3 4(11 q1 = 2 = (Qa2.

Ejercicio 30.A,B. La firma i debe elegir ¢; para, dado @}_;, maximizar
(120 — 2¢; — 2Q—;) ¢; — 10 — ig;

Las condiciones de primer orden arrojan

120 — 2Q—;
¢ (Q-i) = 4+ 2
por lo que el equilibrio resuelve el sistema
q]_ — 120—2g2—2q3
g = 120—2(811—2(]3
_ 120-2¢1—2¢»
q3 = 10

Las cantidades de equilibrio son g1 = 2, ¢ = 2, ¢3 = 35,

Ejercicio 31. La funcién de reaccién de la firma ¢ viene dada por la maximizacién de sus beneficios tomando
como dada la cantidad de las otras. Elegir ¢; para maximizar

i

4

Para encontrar el equilibrio de Nash, debemos resolver el siguiente sistema

G (120~ 20 —2Q . ~8— i) = b (Q ) = 28—+ — Q.

@ =28-3-3(@2+gq)
2=28—%—3%(q1+q3)
3=28-32—3(q1+q)

que arroja q; = %, Q2 = 5745, q3 = 5743. Una manera sencilla de resolverlo es meter la ecuacién de g3 en las dos
primeras y de la segunda dejar g2 como funcién de ¢; y meterla en la ecuacién 1 (ya sin gs3).

Ejercicio 32. La condicién de primer orden es e; —2(e; —eg) —1 =0, 0 €1 = %62 - %, y simétricamente

ez =3e;1 — 3. Queda entonces e = 3 (3e; — 1) — 3, 0ef =e3 =1
Ejercicio 110A,B. El juego en forma normal es I = {1,2}, S; = So = R (puede elegir cualquier nimero

positivo de cabras), y

u1 (91,92) = 91 (120 — g1 — g2) — cg1, y u2 (91,92) = g2 (120 — g1 — g2) — cga.

El granjero 1 elige g; para maximizar g1 (120 — g1 — g2 — ¢), que arroja g1 (g2) = %ﬂ. En forma
similar obtenemos g2 (g1) = &7291—78. La condicién de equilibrio es que g1 debe ser la mejor respuesta a gs,

cuando gs es la mejor respuesta a g; :

120 — 120—2g1—c —¢c 120 — ¢
g1 = 7 491 =240-1204+g1 +c—2c& g1 = 3
y luego obtenemos también g (g1) = 120_291_c = 120=c
110.C. Si decidieran conjuntamente el nimero de cabras, maximizarfan G (120 — G — ¢) , que da un ntimero
6ptimo de G = %, que es menor que gy + go = 212%_0. Tenemos que en el equilibrio de Nash hay sobre

explotacién del recurso comun.
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110.D. El individuo 1 debe elegir ¢g; para maximizar g; (120 — g1 — go — g3 — ¢) que da como resultado

g1 (92,93) = &%M. En forma andloga, go = &%M Vg3 = &%M. Si llamamos G al total

de cabras, G = g1 + g2 + g3, vemos que restando %+ en la funcién de reaccién de 1 obtenemos

g1 120—go—g3—c g1 g1 120-G-—c
_a_ L T T L —120—G—c
= 2 2 779 2 91 ¢

Procediendo de igual manera para gs y g3, llegamos a go = g3 = 120—G—c. Por lo tanto, las tres cantidades

son iguales, y de la ecuacién g; = 120 — 3g; — ¢ obtenemos g; = 129[‘3 (y también go = g3 = %).

No importa cudnta gente haya, la cantidad 6ptima de cabras para maximizar el beneficio conjunto se

129=¢_ Sin embargo, cuanto mds gente hay, el nimero de cabras en equilibrio sigue

aumentando. En este caso, con tres jugadores, el nimero de cabras es % (120 — ¢) > % (120 — ¢) que era la

mantiene en G =
cantidad con dos jugadores. Eso es una idea vieja: cuanto mds gente hay, mds grave es el problema de la

sobre explotacién de los recursos. Aunque la idea suena razonable, no se cumple en todos los modelos, sin
embargo.
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Estrategias mixtas

En estas notas enunciamos y demostramos un teorema que describe (o caracteriza) la forma exacta de
los equilibrios en estrategias mixtas. Las notas también contienen una serie de ejercicios que utilizan esta
caracterizacién para encontrar los equilibrios en estrategias mixtas de ciertos juegos.

Para un conjunto finito X = (z1, ..., 2, ) definimos AX como el conjunto de distribuciones de probabilidad

AX{pGRﬁ:fpil}.

i=1

sobre X. Formalmente

Para un juego en forma normal I'y = [I , {4, uz}ﬂ en el cual los espacios de estrategias S; son finitos para

todo ¢, el juego I'y = [I, {AS;, uz}ﬂ se llama su extensiéon mixta.

Teorema 0: Seal'y = [I, {AS;, ul}ﬂ un juego en forma normal, y sea St (o) C S; el conjunto de estrategias
que el jugador ¢ juega con probabilidad estrictamente positiva en el perfil de estrategias o = (o1, ...,07) . El
perfil de estrategias o es un equilibrio de Nash en I'y si y sélo si para todo @

(i) w; (si,0—;) = u; (sh,0_;) para todo s;, s, € Si (o)
(ii) w; (8i,0—;) > w; (s}, 0_;) para todo s; € S;" (o), € ;.

Prueba: Supongamos primero que o no es un equilibrio de Nash. Demostraremos que se viola entonces (i)
o (ii). Si o no es un equilibrio, quiere decir que existe un jugador i, y una estrategia o} para ese jugador,
tal que u; (0}, 0-;) > u; (04,0-;) . Como u; (o}, 0_;) = o} (s1) u; (s1,0-3) + ... + 0% ($n) wi (sn, 0—;) tiene que
haber alguna estrategia s; tal que w; (s}, 0_;) > w; (04,0-;) = u; (84,0—;) para toda s; € Sf (o), lo cual
viola la condicién (ii).

Supongamos ahora que se violan (i) o (ii). Demostraremos que entonces ¢ no puede ser un equilibrio de
Nash. Si se viola una de las dos condiciones (cualquiera de las dos), existen s; € S; (o) y s} € S; tales que
w; (85, 0-;) > w; (84, 0—;). Construiremos ahora una estrategia o para el jugador 7, que le da una utilidad
estrictamente mayor que o; cuando los oponentes juegan o_;, y con eso quedard demostrado que ¢ no es un
equilibrio de Nash. La estrategia o que nos definimos, es una en la cual el jugador i juega s} cada vez que
le tocarfa jugar s;. Formalmente,

o (8) sis ¢ {s; s}
o, (s) =% oi(s;) +0i(sh) sis=s]
0 sis=s;

Tenemos entonces que

wi(oh,0) = Y oi(s)ui(s,05) + 0% (si)wi (si,04) + 0% (s)) wi (s],0-4)
= Y ol ui(s,0-0) +0+0% (s ui (] o)
= Y i) ui(s,0) + 0} () ui (sl o)
= 3 | i (8) u; (s,0-i) + (07 (5:) + i (57)) wi (53, 0-)

> > oi()ui(s,0m) o (si) ui (si,03) + 0 (s]) wi (s}, 0-3) = u; (0)
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como querfamos demostrar. ll

Ejercicio 1: En el juego de matching pennies de la figura, encontrar todos los equilibrios.

Jugador 2
Cara NUmero
Cara 1 -1
Jugador 1 Ndmero -1 1

Ejercicio 2: En el juego de Meeting in New York de la figura, encontrar todos los equilibrios para a,b > 0.

Jugador 2
Empire States Grand Central
Empire States a,a 0,0
Jugador 1 Grand Central 0,0 b,b

Ejercicio 3. En el siguiente juego, encuentre todos los equilibrios, tanto en estrategias puras, como en
estrategias mixtas. (Pista: utilice la caracterizacién de los equilibrios en estrategias mixtas para demostrar

que el Jugador 2 nunca usard una de sus acciones en un equilibrio en estrategias mixtas).

I M D
Al45 10,1 [9,0
B(1,1 |8,7 (9,0

Ejercicio 4. La batalla de los sexos. Juan e Inés prefieren pasar una velada juntos, antes que separados. A
Juan le gusta el futbol y a Inés le gusta la misica cldsica. Quedaron en encontrarse, pero no recuerdan si en

el Estadio o en el Solis. La matriz de pagos para este juego es

Inés
Estadio Solis
Juan Estadio 2,1 0,0
Solis 0,0 1,2

Encuentre todos los equilibrios de este juego.

Ejercicio 5. La batalla de los sexos, con boxeo. Juan (jugador I) e Inés (jugadora IT) prefieren pasar una
velada juntos, antes que separados. A I le gusta el fitbol y a II le gusta la musica cldsica. A ninguno le
gusta el boxeo. Quedaron en encontrarse, pero no recuerdan si en el Estadio (opcion ¢), en el Solis (opcién

b) o en el Luna Park (opcién a). La matriz de pagos para este juego es
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a b c
al 0,0 0,3 |05
I b| 3,0 23 | 1,1
c| 50 1,1 3,2

Encuentre todos los equilibrios de este juego. Para ello, demuestre, usando la caracterizaciéon de los equi-
librios, que ninguno de los dos jugadores jugard la estrategia a en un equilibrio. La estrategia a se llama
“dominada” pues para cualquier cosa que haga el otro jugador, la estrategia b me da una utilidad mayor
que la a. Una vez eliminada la estrategia a, encuentre los equilibrios del siguiente juego.

2,3 | 1,1

Ejercicio 6. En el siguiente juego, encontrar todos los equilibrios en estrategias mixtas (el jugador I elige
filas y el II columnas).

I M D)

Para hacerlo, siga los siguientes pasos.

Parte A Sea p la probabilidad con que I juega A. Grafique con p en las abcisas la utilidad de II de jugar I,
M, o D. Utilice la caracterizacion de las estrategias mixtas para mostrar que II nunca jugard las tres acciones
con probabilidad positiva. En particular, ; hay algtin p que haga que las utilidades de I de sus tres acciones
sean iguales?

Parte B Muestre que no hay equilibrios en estrategias puras. Muestre también que no hay ningin equilibrio

en el cual II juega sélamente I y M. Muestre que no hay ningun equilibrio en el cual II juega sélo I y D.
Parte C. Encuentre el equilibrio en el cual II juega M y D.

Ejercicio 7. En el siguiente juego, encontrar todos los equilibrios en estrategias mixtas (el jugador I elige
filas y el IT columnas).
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Para hacerlo, siga los siguientes pasos.
Parte A Sea p la probabilidad con que I juega A. Demuestre que no hay ningin equilibrio en el cual p > %
Parte B Demuestre que no hay ningtin equilibrio en el cual p < %

Parte C Sean (g7, qpr) las probabilidades con que II juega I y M respectivamente. Demuestre que no hay
ningtn equilibrio en el cual q; # 1 — q; — qa (es decir, en cualquier equilibrio IT debe jugar I y D con la
misma probabilidad).

Parte D Demuestre que p = 1 y (g7, qn) = (a,1 — 2a) para todo a € [O, %} es un equilibrio.

Ejercicio 8. Los pagos en el siguiente juego

Ladrén
Robar No Robar

Alarma v-a,-plv-a 0
Dueno

NoAlarma |0 , v |v ,0

representan una situacion en la cual un auto vale $v. El dueno puede elegir ponerle alarma con un costo
de $a < v, en cuyo caso, el auto estard seguro, y si el ladrén intenta robar el auto, ird seguro a prision,
recibiendo una pena de p. Si el ladrén no intenta robar, recibe 0 de pena, mientras que si intenta robar y no
hay alarma, se queda con el valor del vehiculo, y el dueno con nada.

Parte A. Encuentre el dnico equilibrio en estrategias mixtas.

Parte B. Llame a la probabilidad con la que el ladrén intenta robar la “tasa de criminalidad”. ;Tiene algin

efecto sobre la tasa de criminalidad un aumento en p, la pena que podria recibir el ladrén? Explique porqué.

Ejercicio 9. Sean I = {1,2} y S; = {a,b,c} para i = 1,2. Las utilidades son u; (¢,c) = 4, u; (b,b) =2y
u; (a,a) =1y para s # s, u; (s,s') =0 para i = 1,2.

Parte A. Dibuje la matriz de pagos de este juego.
Parte B. Encuentre todos los equilibrios de este juego.

Ejercicio 10. Poner una estrategia o} que sea mejor que o; (de la demostracién de mixtas) que le asigne
rob positiva a las mismas que o;, mas una edir que construyan una o} que sea mejor que ambas
) 3 1

Ejercicio 11. Bienes piblicos. El problema del free rider. Considere un juego en el cual si una
persona “aporta’, recibe 10 de utilidad, sin importar lo que hagan los demds. Si la persona no aporta, pero
alguien mds lo hace, entonces la persona recibe 15, pero si nadie mds aporta, recibe —85.

Parte A. Calcule 3 equilibrios de este juego cuando hay sélo dos jugadores.
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Parte B. Calcule el tinico equilibrio simétrico (todos juegan la misma estrategia) cuando hay n jugadores.

Parte C. Calcule la probabilidad de que al menos una persona aporte como funcién de n. Calcule el limite

cuando n tiende a infinito de esta expresion.

Ejercicio 111 Kitty Genovese; caso real. Una mujer estd siendo golpeada, apunalada y violada en el
estacionamiento al aire libre de un edificio. Ella grita y todas las luces en los n apartamentos se prenden, y
los vecinos se ven unos a otros mirando. Los pagos (en niveles de utilidad) para cada uno de los n vecinos
son los mismos: si yo llamo mi pago es 0; si no llamo y alguien llama, mi pago es 1; si no llamo y nadie
llama, mi pago es —2.

Parte A. Cada individuo ¢ tiene que elegir una probabilidad p; de llamar a la policia. Si todos los deméds
vecinos estdn eligiendo llamar con la misma probabilidad p, calcule la utilidad del individuo 1 de llamar
seguro, y la utilidad de no llamar seguro. Encuentre el p que hace que sean iguales. Para este p hay un
equilibrio de Nash: si todos los deméds llaman con esa probabilidad, a mi me da lo mismo elegir cualquier
q € [0.1] y lamar con esa probabilidad ¢; por lo tanto, llamar con probabilidad p es una mejor respuesta.

Parte B. Calcule la probabilidad de que al menos una persona llame, como funcién de n. Muestre que es

decreciente en n.

Ejercicio 112 Hay dos individuos i = 1,2 que deben elegir con qué probabilidad jugar la accién A en el
siguiente juego

A B
A 1,3 1,0
B 0,1 2.2

Encuentre los tres equilibrios de este juego. ;Cudles serian los equilibrios si el pago para el individuo 2 del
perfil de estragegias (B, B) fuera 17

Ejercicio 113 El jugador 1 puede elegir una de 4 rutas a, b, c o d (listadas de répida a lenta). Las rutas més
rapidas son mds suceptibles a avalanchas. El jugador 2 debe elegir si usar un explosivo o no para causarle
una avalancha al jugador 1. Los pagos son

No Usa
a 12,0 0,6
b 11,1 1,5
c 10,2 4,2
d 9,3 6,0

Parte A. Sea p la probabilidad que 1 le asigna a que 2 no use el explosivo. jqué deberfa hacer 1, si piensa
quep> 27 jysip< 2? jysip=3?

Parte B. ;Hay alguna ruta que 1 no deberia tomar seguro? Es decir, jhay alguna estrategia dominada?
Parte C. Encuentre un equilibrio de Nash en que un jugador juega una estrategia pura s, y el otro una
mixta. Encuentre otro equilibrio en estrategias mixtas en que a la estrategia pura del equilibrio anterior se
le asigna una probabilidad de 0. ; Hay otros equilibrios?
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Ejercicio 114 Considere el siguiente juego (tomado del libro “A Course in Microeconomic Theory” de
Kreps)
131 lo l3 4
s1 | 200,6 3,5 4,3 | 0,—1000
sg | 0,—1000 | 5,—1000 | 6,3 | 3,20

Parte A. Encuentre los equilibrios en estrategias puras.
Parte B. Encuentre un equilibrio en estrategias mixtas.

Parte C. Argumente, lo mds formalmente que pueda, que no existe ningin otro equilibrio.

Ejercicio 115 Un ciudadano (jugador 1) tiene que decidir si rellenar honestamente la declaracién jurada
para el célculo del IRPF o maquillar los nimeros a su favor. El jugador 2 es un funcionario de la DGI;
su problema es elegir cudnto esfuerzo e € [0,1], dedicar a auditar al jugador 1. Esforzarse e le cuesta
c(e) = 100e2. Si el ciudadano es honesto, su utilidad es 0, mientras que el auditor no recibe nada y debe
pagar el costo de su esfuerzo, por lo que la utilidad serd —100e?. Si el ciudadano miente en la declaracién y
lo agarran, le debe pagar 100 al auditor (su beneficio neto es —100), y el auditor tiene un beneficio neto de
100 — 100€2. Si el ciudadano miente y no lo agarran, su utilidad es 50 (lo que se ahorré de impuestos) y la
del auditor es —100e2. Si el auditor ejerce un esfuerzo e, la probabilidad de agarrar al ciudadano si mintié

es de e.

Parte A. ;Cudl es la mejor respuesta del funcionario si estd convencido que el ciudadano estd evadiendo?
Parte B. ;Cémo cambia su respuesta si el funcionario cree que es honesto?

Parte C. Si el funcionario cree que el ciudadano es honesto con probabilidad p, cémo varia el nivel de
esfuerzo 6ptimo en funcién de p? (encuentre la mejor respuesta del funcionario a una estrategia mixta del
ciudadano, cuando elige ser honesto con probabilidad p).

Parte D. ;jEste problema tiene un equilibrio de Nash en estrategias puras?;Por qué? (esto requiere una
demostracion).

Parte E. ;jHay algun equilibrio en que el ciudadano juega estrategias mixtas? (no considere estrategias
mixtas para el funcionario, que en este caso serfan distribuciones de probabilidad sobre el intervalo [0, 1]).
Si lo hay, encuéntrelo.
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Soluciones

Ejercicio 2. Sean o1 y o2 las probabilidades que le asignan los jugadores 1 y 2 a ES. Ya sabemos que
los perfiles (1,1), (0,0) y ( b b ) son equilibrios. Supongamos que hay otro equilibrio (p, q) para p,q ¢

a+b’ at+b
b b
{0, g » a+b

1} . Supongamos en particular que p € (0
la condicién (z) de la caracterizacién nos dice que ES no es jugado por el jugador 2 en el equilibrio, por

) . En ese caso, ug (p, GC) > ug (p, ES), por lo cual,

tanto, ¢ = 0. Como u1 (GC,0) > uq (ES,0), sabemos, otra vez por la condicién (i) que ES no serd jugado
por 1 en equilibrio, por tanto obtenemos p = 0. Eso constituye una contradiccién porque supusimos que

b
p e (O, a_+b) .
En forma similar, uno muestra que p € (aL_H), 1) no puede ser parte de un equilibrio. Finalmente, uno

debe seguir los mismos pasos para demostrar que ¢ € (O, #) yqe€ <ai+b, 1) no pueden ser parte de un
equilibrio.

Ejercicio 5. La caracterizacién nos dice que si una estrategia se juega en equilibrio, no puede haber ninguna
otra que nos de mayor utilidad, dada la estrategia del otro jugador. Escribiendo la utilidad esperada de jugar
a para cualquier estrategia de II observamos que es menor que la utilidad de jugar b. Por ello, I nunca jugara
a. En forma similar descartamos a para II. La solucién del juego cuando se eliminé a es facil y se omite.

Ejercicio 6.A. En la gréfica (que no se presenta acd) se ve que no hay ningtin p para el cual

uz (p, I) = ug (p, M) = uy (p, D).

Formalmente,

uz (p,I) = wua(p, M) & p=

winn wl =

us (p, D) uz (p, M) < p=

por lo cual, la caracterizaciéon de los equilibrios en estrategias mixtas nos dice que no hay ningin equilibrio

en el cual el jugador II asigna probabilidad positiva a sus tres estrategias.

6.B De la matriz es facil ver que no hay equilibrios en estrategias puras. Supongamos que (o1,032) es un
equilibrio de Nash en el cual el jugador II juega sélo I y M (es decir, o3 (I) + 02 (M) = 1). En ese caso, la
caracterizacion de los equilibrios en estrategias mixtas nos dice que el jugador I querra jugar sélo A, pues

Ul (A,O'z) =1>0=wu (B,O'z).
Obtenemos entonces o1 (A) = 1. Pero si esto es asi, debemos tener que o3 (D) = 1, pues

UQ(O'l,D) = 3>2ZUQ(O'1,M)
UQ(O'l,D) = 3>0=’Ug(0’1,]).

Tenemos pues una contradiccién: no puede suceder que o5 (I) + 09 (M) =1y que o5 (D) = 1.
Finalmente, no hay ningin equilibrio en el cual II mezcla sélo I y D, pues si asi fuera, tendria que ser
indiferente entre esas dos estrategias, y ello sélo es posible cuando o (A) = 1/2, y ello arroja

3
U2 (0'1,1) = Uy (O’l,D) :5 <2=uy (Jl,M).

199



6.C. Ya vimos que no hay ningin equilibrio en el cual II juega sus tres estrategias. Vimos también que no
hay equilibrios en estrategias puras. También, aunque hay potencialmente varios equilibrios en los cuales el
jugador II mezcla 2 de sus 3 estrategias, en la Parte B vimos que no puede mezclar I y M ni I y D. Por
lo tanto, sélo nos resta encontrar el equilibrio en el cual II mezcla entre M y D. Haciendo las cuentas de
siempre, obtenemos:

oro)={ ((3.4). 0.4,

)) este es el equilibrio en el cual II juega M y D

N

Ejercicio 7.A Si p > %, el jugador II juega seguro I (pues la utilidad de I es mayor que la de las otras
estrategias, y la caracterizacién nos dice que entonces se juega sélo I). En ese caso, el jugador I juega B

seguro, lo que quiere decir que p = 0.
7.B.Sip< %, IT juega D, y el jugador I juega A, por lo que p = 1.

7.C. Si gr > 1 —qr — qu, la utilidad de I de jugar B serd mayor que la de jugar A, y por la caracterizacién
sabemos que p = 0, por lo que no puede ser un equilibrio. Si en cambio q; < 1 —q; — qar, I jugard A seguro,
lo que tampoco puede ser.

7.D. Para estas probabilidades, Uy (4) = 1 = Uy (B) por lo que I estd jugando una mejor respuesta. De la
misma manera, para p = %, Urr (I) =Upp (M) = Upp (D) = 1, por lo que IT también estd jugando su mejor

respuesta.

Ejercicio 8. Para un perfil de estrategias (s1, s2) las utilidades del duefio y del ladrén son
ug(s1,82) = s1s2(v—a)+s1(1—s2)(v—a)+ (1 —51)820+ (1 —51) (1 —82)v=151(s2v—a)+ (1 —s2)v
up (s1,82) = s2((1—=s1)v—s1p)=s2(v—51(v+p)).

Como son funciones lineales, no podemos derivar para encontrar la mejor respuesta, pues serdn tipicamente
soluciones de esquina. Asi, nos fijamos en el signo del coeficiente que multiplica a la variable de eleccién y
nos queda que las mejores respuestas son

0 8152<% 0 Si81>v1p
ba(s2) =9 [0,1] sisp=2 'y bi(s1)=1q [0,1] sis; = i
1 Sng>% 1 SiSl<v_T_p

v+p7;

Vemos que el unico punto de interseccién de las mejores respuestas es (s1,82) = (L “) (dibuje las
mejores respuestas para verificarlo). Sélo para ser repetitivo vamos a hacerlo sin la gréfica: si s1 <

v
v+p
un equilibrio, entonces deberfamos tener que como sy es una mejor respuesta, tiene que ser so = 1 (si el

en

dueno no pone alarma seguro, es éptimo para el ladrén robar), pero si so = 1, para que sea un equilibrio,
debemos tener s; = 1, que es una contradiccién. En forma similar descartamos perfiles con s; > ULW, pues
ello implica so = 0, y eso a su vez implicarfa s; = 0. Acabamos de demostrar que no hay equilibrios con
v

s1 < =% ni con §1 > -

P En forma similar podemos descartar equilibrios con s; > ¢ y equilibrios con

v a v
v+p’ v v+p
a

cualquier sp es una mejor respuesta, por lo que s = ¢ es una mejor respuesta; por otro lado, si sp =

sy < %. Por lo tanto sélo nos queda como candidato (s1,82) = < > . Vemos que si s; = entonces

a
IRl

entonces cualquier s; es una mejor respuesta, y en particular s; = es una mejor respuesta. Eso muestra

v
v+p
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que (s1,82) = (#p, %) es un equilibrio, pues cada uno estd jugando una mejor respuesta a lo que hace el
otro.

Ejercicio 11.A. Hay dos equilibrios en estrategias puras, que son: que el jugador 1 aporte y el 2 no; que el

2 aporte y el 1 no. Hay otro en estrategias mixtas que es que ambos jueguen Aportar (A) con probabilidad
95%.

11.B. Si hay n jugadores y cada uno juega A con probabilidad «, la utilidad de jugar A para cualquiera de
ellos es 10, mientras que la de jugar N es

1—(1—a)" ") 15— (1 —a)" ' 85.
(1-a-a) ) 15— -a)

Igualando a 10 obtenemos

n—1 n—1 b = —
(1—(1—a) )15—(1—a) 85=10ca=1-(— =1-207%.
100
11.C. La probabilidad de que al menos una persona aporte es el complemento de la probabilidad de que
nadie aporte:

P (al menos 1 aporte) = 1 — P (ningiin aporte) =1 — (1 — )" =1—201-%

Tomando el limite vemos que la probabilidad de que al menos una persona llame es

. —n_ 19

nlirgo (1 — 201%) =30

La ensenanza econdémica de este ejercicio es que la probabilidad de que el bien piblico (que alguien aporte) se
provea es decreciente en n : cuanto més gente hay, todos confian en que alguien méas aportaré, y el problema
del “free rider” (la gente que quiere garronear, y que otros hagan lo que ellos deberian hacer) se hace mds

grave. Vemos que
1

2071

P (al menos 1 aporte) =1 — 2077 =1 —

decrece con n.

Ejercicio 112. El individuo 1 elige a y el 2 elige 5. Un equilibrioescona = =0y otroescona =g = 1.
En el tercero, 8 es tal que

w (A8 =1=2(1-§)=u (B,5) & S =1
y « es tal que

1
uz(a,A):3a+1fa:272a:u2(a,B)¢>a:Z

Ejercicio 113.A. Los pagos de 1 son U (a,p) = 12p, U (b,p) = 10p+1, U (¢,p) = 6p+4y U (d,p) = 3p+6.
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Los cortes a partir de los cuales conviene jugar a son U (a,p) > U (b,p) & p > %; U(a,p) >U(c,p) & p> %;
U(a,p) >U(d,p) & p> % Por lo tanto, para p > % le conviene jugar a. Si p < %, conviene jugar d ya que
en ese caso los cortes son U (d,p) > U (a,p) & p < % (ya sabiamos eso); U (d,p) > U (b,p) & p < % ~ 0.714;
U(d,p) >Ul(c,p) e p< % Sip= %, le da lo mismo jugar a,c o d.

113.B. La utilidad de jugar b es 10p + 1. De la grafica vemos que podria estar siempre por debajo de una
combinacién de a y d. Entonces, planteamos jugar a con propbabilidad = y d con probabilidad 1 —z, que nos
da una utilidad esperada de z12p + (1 —x) (3p+6) = (9z 4+ 3)p + (6 — 62) , y queremos que el coeficiente
sobre p sea mayor que 10 (eso sucede si x > g = 0.78, y que el término independiente sea mayor que 1 (que
sucede si x < % = 0.83). Por lo tanto, para z = %, a esa estrategia le va mejor que a b, sin importar cuanto

sea p :

4 4 51 6
x12p—|—(1—x)(3p—|—6):312p+ (1—5> (3p—|—6):Ep—|—g > 10p + 1.

Por otro lado, una cuenta parecida (jugar a y d mezcladas) para comparar con la estrategia ¢ arroja

9r+3>6 x> % y6—6xr>4< < % Por lo tanto, la utilidad de jugar a con probabilidad % y d con
probabilidad % nos da una utilidad de (9 * % + 3) p+ (6 — 6% %) = 6p+4. Es decir, ¢ no estd dominada (da
la misma utilidad que la mezcla, sin importar lo que haga el jugador 2).
Ejercicio 113.C. El que juega la estrategia pura no puede ser el jugador 2, ya que en ese caso el jugador 1
elegirfa a si 2 jugara No, llevando a que 2 quiera jugar Usa (eso no es un equilibrio entonces), mientras que
si 2 eligiera Usa en equilibrio, el jugador 1 jugaria d, que llevaria a 2 a querer cambiar a No (tampoco es un
equilibrio).

Por las cuentas anteriores, si 1 juega la estrategia pura c, a 2 le da lo mismo jugar cualquier cosa, por lo
que si juega % (tiene que ser %, porque de lo contrario 1 juega a o d), el jugador 1 estd contento jugando c,
y es un equilibrio.

No Usa
a 12,0 0,6
b 11,1 1,5
c 10,2 4,2
d 9,3 6,0

Por otro lado, el jugador 1 podria jugar a con probabilidad ¢ y d con 1 — ¢ para dejar a 2 indiferente

entre usar explosivos o no:

1
Uz (¢, No) =0g+3(1 —q) =6¢+0(1—q) =Uz(q,Usa) < q = 3 = Uz (q,No) = Uz (¢, Usa) = 2.
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De la parte A sabemos que para que 1 esté indiferente, 2 debe jugar No con probabilidad %, y entonces
tenemos otro equlhbrlo en que 1 juega a con probablhdad y d con probablhdad ; el jugador 2 juega No
con probabilidad 2 % (el jugador 1 no juega ¢, como pide el eJer0101o).

Hay otra cantidad de equilibrios en que 2 juega % (dejando a 1 indiferente entre a,c y d) y el jugador
1 elige ¢ con probabilidad z, y una combinacién de 2 sdeay 3§ 2 de d con probabilidad 1 — z (es decir, una
mezcla entre los dos equilibrios analizados antes, en la que la proporcién de a y d se mantiene constante).
En ese caso la uilidad del jugador 2 de Usar o No explosivos es la misma: llamemos X a la distribucién de
probabilidades ((1 — ) %, 0,z,(1—x) %) sobre las acciones a, b, c y d de tal manera que la utilidad de 2 de

sus dos acciones es
1 2 1 2
Us (¢, No) :(1—x)§O+x2+(1—x)§3:2: (1—x)§6—|—x2—|—(1—x)§O:U2 (q,Usa).

Es decir, para cada x hay un equilibrio de ese tipo.
Ejercicio 114. La estrategia to estd dominada por la tq, asi que la ignoramos. Si el jugador 1 juega s; con

probabilidad p, el jugador 2 obtiene utilidades

t1 t3 14
6p — 1000 (1 —p) [ 3 | 20(1 —p) — 1000p |

Para p =0, el jugador 2 juega t4 seguro, por lo que 1 juega p = 0, y tenemos un equilibrio.
Para 0 < p <
equilibrio ahi.

60, el jugador 2 jugaria t4 seguro, y el jugador 1 jugarfa p = 0, con lo cual no hay un

Para 6—10 <p< %, el jugador 2 jugaria t3 seguro, por lo que el 2 jugaria p = 0, por lo que no hay
equilibrio con esos p.

Para }882 < p <1, el jugador 2 juega t; seguro, por lo que el jugador 2 jugaria p = 1, por lo que no hay
equilibrio.

Para p =1, 2 juega t; y 1 juega p = 1, por lo que ahi hay otro equilibrio.

Ya tenemos los dos equilibrios en estrategias puras El equilibrio en estrategias mixtas debe ser con

1003

p= 0 0 p = {05+ Lenemos sin embargo, que con p = el jugador 2 jugarfa alguna combinacién entre t3

607
y t4, pero cualquiera sea la combinacién, el jugador 1 jugaria p = 0 con certeza, por lo que no puede haber

un equilibrio ahi.

Para p = %, el jugador 2 juega t1 con probabilidad ¢ y t3 con probabilidad 1 — ¢. En ese caso, para
que 1 sea indiferente entre sus dos estrategias, debemos tener
1
u1 (s1,9) =200¢ +4(1 —q) = 6(1 —q) = w1 (s2,9) & ¢ = 757

Ya encontramos los 3 equilibrios. Y de pasada, hicimos la discusién que muestra que no hay maés: para

p = 0, tenemos un equilibrio; para p < 6—10 no hay equilibrio; p = 610, tampoco; para 6—10 <p< % tampoco

hay equilibrio; para p = }882 hay un segundo equilibrio; para }882 < p < 1 no hay equilibrio, y para p =1

estd el tercero.

Ejercicio 115. Supongamos que el ciudadano es honesto con probabilidad p (eso incluye los casos en que
evade seguro, y que es honesto seguro). La funcién de utilidad del funcionario es

us (p,e) = p (—100e®) + (1 — p) (e (100 — 100e?) + (1 — €) (—100e®)) = 100e (1 — e — p)

. . . 1—
que como es una pardbola con raices 0 y 1 — p se maximiza en e = 2.
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Las utilidades del ciudadano de ser honesto o hacer trampa, cuando el funcionario hace un esfuerzo e,
son
te (hye) =0y u. (t,e) = e(—100) 4+ (1 — e) 50.

Vemos entonces que no hay equilibrios en los que el ciudadano juega una estrategia pura. Si el equilibrio
fuera (p,e), con p = 0, la mejor respuesta del funcionario seria ejercer un esfuerzo de %, pero en ese caso
la utilidad de hacer trampa seria —25, que es menor que 0, y la mejor respuesta del ciudadano serfa jugar
p =1, lo que contradice que p = 0.

Por otro lado, si p = 1 tenemos e = 0, en cuyo caso la utilidad de hacer trampa es 50, mayor que 0, por
lo que si estamos en un equilibrio, el individuo debe estar jugando “hacer trampa, p = 07, que contradice
p=1.

Para que el ciudadano juege estrategias mixtas debemos tener uc (h,€) = uc (t,€) < e = 3. Eso a su vez

implica que 1—;2 = %, op= %
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