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Abstract

In a standard search model | relax the assumption that agents know the distribution of offers
and characterize the behavioral and welfare consequences of overconfidence. Optimistic individuals
search longer than pessimists if they are equally “stubborn” and high offers are good news.
Otherwise, the pessimists search longer. The welfare of unbiased individuals is larger than that of
overconfident decision makers if the latter’s biases are large and searchers stubborn. Otherwise, the
overconfident may be better off. Finally, | give a testable implication of overconfidence and discuss
some applications and policy issues.

0 2003 Elsevier Inc. All rights reserved.

1. Introduction and motivation

“Dozens of studies show that people generally overrate the chance of good events,
underrate the chance of bad events and are generally overconfident about their relative
skill or prospects. For example, 90 percent of American drivers in one study thought they
ranked in the top half of their demographic group in driving skill” (Camerer, 1997).

Despite the substantial evidence that overconfidence is pervasive, it has not received
much attention in economic modeling. Given the wide applicability of search models,
| study the implications of overconfidence in the search behavior of rational agents. To
do so, | relax the usual assumption that the searchers know the true distribution of wage
offers and suppose only that agents’ beliefs are derived from a prior over a set of possible
distributions?

E-mail addressdubraj@um.edu.uy.
1 1 will not discuss this evidence here. See Camerer (1997) for experimental and psychological references.
2 Several other authors have also studied search behavior when the distribution is not known. See Kohn and
Shavell (1974), Rothschild (1974), Burdett and Vishwanath (1988) and Bikhchandani and Sharma (1996).
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This paper has four objectives. The first is to establish the behavioral implications of
optimism in a simple search model. Bikhchandani and Sharma (1996) have shown that
when there is learning, the order of static optimism of two individuals may be reversed after
observing the same information. Thus, they say that one individual is more optimistic than
another if he assigns higher probabilities to high offers after all sequences of observations.
I show that this definition of optimism fails to predict optimistic behavior. That is, even if
one searcher is more optimistic, in their definition, the former may accept offers that the
latter would reject. | then provide a new definition of optimism that guarantees that if one
individual is more optimistic than another, the latter stops searching first. The reason why
Bikhchandani and Sharma’s definition of optimism fails to predict optimistic behavior is
that in this context offers have informational value: as search evolves, individuals learn
about the unknown distribution. Suppose then that a low offer implies that offers in the
future will be high. In that case, optimism about today’s offers may lead to a lower expected
value of searching than pessimism. This, in turn, yields shorter search times for the more
optimistic agent. The main result on behavior is that a searcher who is more optimistic
(about the next offer) than another after all sequences of draws samples longer whenever
there is a searcher who believes that high offers today mean high offers in the future, and
whose priors lie “between” the more and the less optimistic priors.

The second objective is to study the welfare implications of overconfidence. | find
conditions under which overconfident agents are worse off than unbiased searchers when
welfare is computed using the true wage offer distribution. In this paper, an individual
is overconfident if he believes that the distribution that generates the offers is better
than it really is. In other words, an individual is overconfident if his prior is such that
his beliefs about the first offer first-order-stochastically dominate the true distribution of
offers. An individual is unbiased if his beliefs about the first offer are correct. | show
that when searchers are not too patient, there are some overconfident individuals who
obtain higher expected payoffs than some unbiased searchers. If agents have a degenerate
prior, being unbiased means knowing the true distribution. In that case, unbiased searchers
mustbe weakly better off than overconfident decision makers. However, if priors are non-
degenerate, the comparison is not between an overconfident individual and a searcher who
knows the truth, but between two searchers who are uncertain about the true distribution,
one of whom happens to be unbiased. Thus, at least in principle, there is the possibility that
an unbiased individual is worse off than an overconfident searcher. In fact,siheunéd
be an unbiased decision maker who is worse off than an overconfident individual. Along
the search process high offers are accepted, so sampling continues only if offers have
been low. Consequently, because priors are updated in each period, there is a tendency
for beliefs to become pessimistic. Therefore, searchers who were initially unbiased and
continue sampling today are likely to wrongfully accept a low offer tomorrow. Slightly
overconfident searchers are more immune to this kind of mistake. Since they are not too
biased, they do not mistakenly reject offers and, because they were originally optimistic,
downward updating is not so harmful.

My third objective is to study the conditions under which the behavior and welfare
consequences of overconfidence diminish over time. Since behavior and welfare are
derived from beliefs, this amounts to finding conditions under which the overconfident
individual's true average posterior approaches the true distribution. | show that, while
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unbiased priors remain unbiased on average, overconfident individuals may become
pessimistic. If the true distribution allows only offers that are “too” low according to the
overconfident decision maker’s beliefs, he may become pessimistic after all offers. This
cannot happen with unbiased priors. To insure that overconfident beliefs diminish over time
and never become pessimistic, it suffices to assume that there is an unbiased belief that is
(dynamically) more pessimistic than the overconfident. The condition is not trivial because

it requires that the overconfident prior remains more optimistic than the unbiased after all
sequences of draws. Then, the result follows because unbiased priors are a martingale and
a lower bound for more optimistic beliefs.

Finally, 1 derive a testable implication of overconfidence. Using the results on
behavior and on evolution of beliefs, | show that overconfident searchers tend to have
shorter unemployment spells, whereas unbiased searchers tend to have constant spell
lengths. Using structural estimation methods and the National Longitudinal Survey of
Youth (NLSY) data, one can compute the proportion of overconfident, unbiased and
underconfident individuals in an economy. This is very important, since it has been argued
that most “evidence” for overconfidence comes from experimental and psychological
evidence, and not from actual economic behavior and data.

| conclude with a discussion of some applications and policy issues.

There are three kinds of theoretical works related to the notion of overconfidence studied
in this paper. The first class analyzes the effects of trader’s overconfidence in financial
markets in a static context. For instance, Benos (1998), Kyle and Wang (1997), and Odean
(1998) show that increased overconfidence leads to greater expected trading volume and
greater price volatility. The second class studies the emergence of trader’s overconfidence
in financial markets. For instance, Gervais and Odean (1997) study, in a dynamic setting,
how biases in learning generate overconfidence. In their model, individuals attribute
good trades to their ability and bad trades to chance. Thus, although overconfidence
reduces expected payoffs, rich traders tend to be overconfident. A third class studies the
consequences of entrepreneurs’ overconfidence. For example, Manove (1995) shows that
increased optimism leads to lower expected utility and inefficient allocation of resources
in a growth model. Manove and Padilla (1999) show that the coexistence of optimistic
and realistic entrepreneurs generates a screening problem for banks and leads to inefficient
allocation of credit.

There are models that study optimism and other notions of overconfidence, but they
are unrelated to my work. One notion of optimism is that in Beaudry and Portier (1998).

In their model, agents observe a signal about an unknown productivity parameter and, if
the signal is high, the individual is optimistic. However, he knows the distribution of the
signal. In my model, the searcher is biased about the distribution. The second notion is
that of self-fulfilling optimism, as in Kiyotaki (1988). In his model, if firms are optimistic
aboutdemand and investment, demand is high in equilibrium, so there is no over-optimism.
In my model, the searcher is overly optimistic about the distribution. Another (seemingly
unrelated) notion of overconfidence that has been studied can be defined as underestimation
of volatility. For example, Alpert and Raiffa (1982) document how people systematically
construct too narrow confidence intervals for random variables.
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2. Themode€

For any compact topological spac&, ) let C(X) denote the set of all bounded
continuous functions from¥ to R endowed with the sup norm. Also, IB(X) represent the
set of all probability measures on the Borel setXoEndowed with the topology of weak
convergence. LeW = {w1, wa, ..., w,} C Ry, with 0 < w1 < w2 < -+ < wy, and define
P2(W) = P(P(W)). | will representany € P(W) by (g1, ..., g:), whereg; = g(w;).

At each dater, the individual receives independent and identically distributed wage
offers from W and must decide whether to accept the current proposal or continue
sampling. His objective is to maximize the expected discounted value of the offer he
accepts. Thus, his decision depends on what he believes about future proposals. In most
search models, it is assumed that the searcher knows the exact distribution from which
offers are drawn. In this paper, | relax this assumption and assume only that the individual
has beliefs over the set of possible distributions. Consequently, his beliefs are a distribution
over probability measures, which can be represented by apeoP2(W).

It is worth noting here that the model presented here encompasses the search model in
which once an offer is accepted, the searcher receives the same wage in every period. For
example, if a searcher accepts an offer of $2, and will receive that salary in every period,
in terms of my model he is accepting a one-time offer of12- §).

As offers arrive, the individual updates his priors according to Bayes’ rule2LetW >
be the set of infinite sequences of offers. Also, for affgr pathw € 2 let o' stand for
the firstr elements ofw andw, for its rth element. Starting with beliets and after a
history«’, the probability of any measurable g8tc P(W) is

igtg(wi)

[
t —
B m)© _C/ /‘H,»g,g(wnn(dg)”(dg)'

If o' is a zerar-probability eventB(w’, ) is arbitrary.

2.1. Optimal search behavior

In this section, | find the optimal policy for the searcher’s maximization problem. In
order to use dynamic programming to find the optimal rule, | need to specify a state space
and the transition probabilities. In usual search models, the state space is the set of wage
offers and the transition is given by the known distribution. Here, the state space must
be extended to account for varying beliefs, and the transition function will depend on the
history of draws.

At each date in which search continues, the searcher has some beliefs, belonging to
P?%(W), and is faced with an offer i If he has accepted a proposal, he receives offers of
0 thereafter. Thus, le&t = P2(W) x {W U{0}} be the state space of the searcher’s problem.

Any prior 7 induces a measure, over W, through

my (w) = / g(w)m (dg).

PW)
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Sincer is a probability over distributionsg,, usually called thenarginal of =, is the
average distribution that an agent with beliefsexpects to face. If beliefs are and
search continues, the only conceivable states tomorrow are of the (®¢m, ), w),

with w € W C R4, and their probabilities are given lay,; (w). Analogously, if an offer
has been accepted, the only possible state j§). Then, the following measures ovEr
describe the transitions:

1 fors=(m0),
0 otherwise

my(w) fors=(B(w,n),w),

Crlsl= { 0 otherwise and Dr[s]= {

The measur€,; gives the subjective probability of each state tomorrow, given that beliefs
today arer and search continue®,, gives the probabilities if an offer has been accepted.
Let A = {a, r} be the action space, whetendicates that an offer is accepted, anithat it

is rejected. For any state, w) and actiorr, define the transitiog (- | (;r, w), ¢) by

N Cr ifweWw,
q('|(”’w)")_{pn if w=0o0rc=a.

Given statgw, w), if the searcher chooses an actigmy (s | (7, w), ¢) gives the subjective
probability of state in the following date. In the next period, an offer is drawn, beliefs are
updated, the searcher chooses an action, and the process is repeated.

Define H; = (S x A)'"1 x S. A policy is a sequence = {p,}3° of functions
such thatp,:H, — A. For each policyp andw € £2, let t(p, w) stand for the date
when an offer is accepted ip is followed. Then, for a discount factat € (0, 1)
and beliefsr, the payoff of policyp is En[af(l”‘“)wr(p,w)] and the value function is
v:S— Risv(s) =sup, E; [677 @, (), 1. The following lemma states thaty (=, w) =
max{w,&fsy(s’)q(ds’ | (T, w),r)}, y € C(S), is a well defined functionk : C(S) —
C(S). All proofs can be found in the Appendix.

Lemmal. Foranyy € C(S), Ky € C(S).

SinceKk is a contraction, it has a unique fixed pointdi{S). Moreover, the fixed point
is the value function .3 DefineV (r) = [v[B(w, ), wlmy (dw), the maximum value of
searching when beliefs are. Then, in any statér, w) € S, accepting an offer if and
only if

w =8V () (optimal policy)

is optimal. The optimal rule states that offers greater than the maximum expected
continuation value of searching should be accepted. To see that the policy is in fact optimal,
recall from Denardo (1967, Corollary 2) that an optimal policy exists. Theny (et

be the expected return of following the above policy for one period and then following
an optimal policy, when starting in an arbitrary stateSincex(s) = v(s) ands was
arbitrary, following the rule in every period is optimal.

3 See in Denardo (1967, Theorem 3). The result is for bounded functions, but his proof, as well as the one of
Corollary 2 to be used later, applies to bounded and continuous maps.
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Note that this rule does not imply a reservation value rule. Assume, as in Kohn and
Shavell (1974), that a searcher believes that there are only two possible distributions. One
that assigns probability 1 to $1 and another with & = 1 — prob($3) = 0.01. If the
firstdrawisw = 1, the individual is certain that he will receive no higher offers and accepts
the proposal. On the other hand, if he is patient and the first dran=i2, he will reject
the offer and wait for a draw of $3.

3. Dynamically consistent optimism and behavior

In static problems, a belie§ about a parameter, or about wage offers, is “higher”
or “better” than beliefr if it can be ranked by first-order stochastic dominance. For
g, h € P(W), g first-order-stochastically dominatefs, denotedg > h, if and only if
Ju(w)g(dw) > [u(w)h(dw) for all non-decreasing functions (Dubins and Savage,
1965). Of coursel> is a partial order on the space of priors. For static decision problems,
> captures the idea of optimism: for all utility functioms(above),g yields a higher
expected utility thark. In this section, | will introduce a partial order in the space of priors
about the sequences of wage offers which will characterize optimism in dynamic contexts.
That is, | will provide a definition of optimism that will insure that if a searcher with a
prior 7t is more optimistic than a searcher with a prigrthen the former obtains a higher
expected utility. Since a higher expected utility of searching implies that more offers are
rejected, the definition of optimism that | will provide also insures longer search times.

Say that a priorr € P2(W) is monotonidf and only if, for all w, k € 2 ands, ' 1 =
k'~ andw; > «; imply Mpwt.m) > Mpt 7). That is, posteriors after high offers first-
order-stochastically dominate posteriors after low offers: high offers make a searcher more
optimistic about the next draw. Monotonicity insures that the informational value of offers
is ordered in the same manner as their monetary value. Dirichlet priors over multinomial
distributions and arbitrary priors over binomial distributions satisfy monotorficTiyis
condition is similar to those used by Bikhchandani and Sharma (1996), Burdett and
Vishwanath (1988) and Milgrom (1981).

I now define optimism for the current context and then show that this partial order in the
space of priors insures that the more optimistic searcher samples lorajeoffer paths.

For any priorst andv, we will say thatr is more optimistichanv, written = > v, if
there exists a monotonjg such thatn,, > m, > m, andmp . ) > Mt p) > Mper v)
for all r and allw € £2. In words, a priorr is more optimistic tham if the marginals of
7 dominate those of after all sequences of draws, and there is a psitletween them
which is “well-behaved.”

For any priorr andw € £2, let t; (w) be theacceptance timeahe date when an offer is
accepted if the optimal policy is followed.

Proposition 2. Assume that > v. Then, for allw € 2, 17 (w) > 7, ().

4 A Dirichlet with parameterr = (w1, o, ..., mn), With r; > O for all i, is a probability measure ovét(W).
Let S(w) = Z’i i, andu; = 7;/S(w). Thenmy (w;) = pi, and B(w;, 7) is a Dirichlet with parametet + ¢;
(wheree; is theith canonical vector). See De Groot (1970).
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Remark 1. Notice that the proposition is not about average acceptance times, but about
what happens along all offer paths. The idea behind this result is that the optimistic
searcher believes that the future is good and thus rejects offers that the pessimist does not.
Monotonicity guarantees that, in terms of information content, high offers are better than
low ones. Then, the requirement that the posteriors are ordered by first-order stochastic
dominance after all draws insures that the more optimistic individual searches longer.

Remark 2. Corollary 1 in Bikhchandani and Sharma (1996) proves that, if the marginals
of the posteriors ofr first-order-stochastically dominate thosewfafter all sequences

of draws, and either one of the priors is monotonic and searchers follow a reservation
wage policy, optimistic searchers sample longer. Therefore, they have more and stronger
assumptions, than in Proposition 2. However, since they concentrate on problems with no
discounting, Proposition 2 is not a generalization of their result. However, my method of
proof can be adapted to their context to avoid the assumptions of a reservation wage and
the requirement that either prior is monotonic.

Remark 3. Proposition 2 can be proved as a corollary to the following result, which can be
proved using the same steps as in Proposition 262et W7, for T € N U {oo}. If 7 > v,
thenE, (u) > E,(u) for all increasing: : 2 — R. See Milller and Stoyan (2002, Theorem
3.3.4) for another condition on priors that insures higher utilfties.

I now discuss what is being assumed and what is not with the postulate that.

First, the assumption that is more optimistic that» does not insure that the searchers
follow reservation wage rules. That is, Proposition 2 does not assume, neither implicitly
nor otherwise, that searchers follow reservation wage rules. To illustrate, consider again
the example of Section 2.1. Recall that in that example searchers believed that there were
only two possible distributions, one that assigned probability 1 to $1 and another with
prol($2) = 1 — prob($3) = 0.01. For anyp > ¢, a searcher who assigns probabilityto

the latter urn, call this priot, is more optimistic than a searcher who assigns probability

to the same urn, call this prier. That is,m > v, and still none follows a reservation wage

rule.

A second issue that is worth noting is that> v applies to the following model which
was used by Burdett and Vishwanath (1988): the urn from which offers are drawn is a
normalwith known variance and unknown mean, and searchers believe that the mean of
the distribution is alsmormallydistributed, only thatr’s mean is higher than’s.

Third, the conditionz > v requiresm, more than just first-order-stochastically
dominatemn,,. As was shown by Bikhchandani and Sharma (1996), such a static condition
is not sufficient to insure longer search times for the searcher with pridBecause
individuals whose prior about the first draw is low in first-order stochastic sense may also
have priors that are less affected by updating than searchers with high beliefs, downward
updating can lead the individual with the initially high prior to stop sampling before the

5 Their condition requires checking that assigns higher probability thaw to all increasing sets.
Unfortunately, this condition is very hard to check, whereas the definition of optimism given here only involves
comparisons of marginals.
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searcher with the low prior. The following example is similar to Bikhchandani and Sharma
(1996, Example 1). It illustrates how different propensities to update may lead a searcher
with prior 7 to search less than a searcher with pricgven thoughn,;, the belief about

the first draw, first-order-stochastically dominates.

Example 1. Let W = {1,2} and Y2 > g > 0. Definef,g,h € P(W) by h = (1,0), f =
(1/2,1/2) andg = (0, 1). Also, define priorst, v, by n(g) =1/2+4¢q, n(h) =1/2 —¢q
andv(f) = 1. Note thatn, first-order-stochastically dominates,, so thatr is “higher”
or “better” thanv.

The posterior ofr is degenerate ih after receiving a draw of 1. Thus, the searcher
accepts the offer of 1 in the first period. Since he also accepts a draw of 2 in any date,
he stops sampling in the first period in every offer path. On the other hand, the searcher
with prior v never revises his priors and, fér> 2/3, continues sampling until a high
draw occurs. Since the size gfindexes how “high” beliefs are, faall levelsq of the
prior andall offer paths, the individual with priat never samples longer than the searcher
with prior v, and sometimes samples less, despite the factthdirst-order-stochastically
dominatesn,,.

This result is driven by the fact thatis affected by updating andis not. This feature
insures that even though,, first-order-stochastically dominates,, the reverse is true
after an offer of 1 arrives. In a sensejs more “stubborn” in the face of new information.
The above example shows that in order to say that one prior is more optimistic than another,
we need the condition that posteriors are also ordered in first-order stochastic sense. That is
in part whatr > v requires, and it is the only requirement in Bikhchandani and Sharma’s
definition of optimism (which, as we now show, does not capture optimistic behavior).

Fourth, even requiring that marginals are always ordered by first-order stochastic
dominance does not necessarily yield longer search times. Since individuals learn about
the true distribution as offers arrive, proposals have informational value. If the total value,
monetary plus informational, of a low offer exceeds that of a high offer, assigning high
probabilities to high proposals may lead to a low value of searching.

The next example shows that requiring that posteriors are ordered by first order
stochastic dominance does not insure thatill search longer thaw.

Example 2. Let W = {2,4,5,6} and 1/4 > ¢ > 0. Defineg, je, he € P(W) by: gc =
(38/4—¢€,0,¢,1/4), je =(1/4—¢€,0,¢,3/4), andh. = (0,1 — ¢, ¢, 0).

Fix § = 0.99 and suppose = 0. Assume also that a searcher is certain that the
distribution is jo = (1/4,0, 0, 3/4). Becauses is close to 1, the searcher samples until
w = 6 is drawn and obtains an expected payoff of approximately 6. The same is true for
go=(3/4,0,0,1/4). If the distribution ishg = (0, 1, 0, 0) however, the searcher accepts
the first offer of 4 and obtains an expected value of 4.

Definer€, v€ € P2(W) by 7€ (jo) = 1—n€(he) = 1/2 andv€(g.) = 1— v (he) = 4/5.

If priors arexr®, whenevem = 2 or w = 6 occur the searcher knows that the distribution
is jo. If w =4 is drawn, the distribution isg. Thus, the value of searching when priors are
7%is V(7% ~ (6 4+ 4)/2 =5. Analogouslyy (v°) ~ (4/5)6+ (1/5)4 > 5~ V (x9). That

is, the posteriors of first-order-stochastically dominate thoseu$¥ after all sequences
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of draws, but yield a smaller value of searching. This result is driven by the fact that a draw
of w = 4 signals a distribution with a value of 4, whereas- 2 informs the individual that
the value of searching is close to 6.

Note that because& 5V (79), §V (v?)), if w =5 is drawn and priors are not updated,
the searcher with priorr® accepts the offer and the one witlf does not. However,
w = 5 is a zero-probability event for both priors, so | will slightly modify them to insure
that searchers can use Bayes’ rule. For anwhenw = 5 is drawn, updating does not
changer€ or v¢. Then 5¢ (8V (19, 8V (v%) guarantees that & (8V (7€), 8V (v€)) =
8V (B(5, 7)), 8V (B(5, v°))) for small enougte. Therefore, whenw =5 is drawn, the
searcher with “high” priorg € will accept the offer and the individual with “low” beliets®
will reject it. Moreover, sinceV (7€) < V (v°), a searcherr¢ whose beliefs about draws
dominate in each period the beliefs of another individufal obtains a lower subjective
expected utility.

In this example, a searcher with beliefs that are high in first-order stochastic sense, stops
sampling before the searcher with low beliefs because a low offer has high informational
value. That is, it is not true that high offers are good news.

In Example 1, searchers have monotonic beliefs. Nevertheless, the different propensities
to update allowed the searcher with beliefs which were high in first-order stochastic
sense to stop sampling before the searcher with low beliefs. Example 2 shows that if
monotonicity fails, the searcher whose beliefs are high in first-order stochastic sense in
every period may stop sampling before the individual with low beliefs.

4. Welfareimplications

In this model, the optimal search rule calls for accepting high offers, so sampling
continues only if offers are bad. Since searchers have non-degenerate priors and they
update their beliefs in each period, this feature of the model makes them become more
pessimistic over time. In this section, | analyze the welfare consequences of this fact.

Throughout, letf € P(W) be the true measure that generates the offers. | will say that
prior r is unbiasedf m, = f. Thatis, a prior is unbiased if the expected value of the urn,
according to beliefs and before any information has been received, is the true urn. In turn,
| will say that a priorz is overconfidenif m, > f. Thatis, a prior is overconfident if its
initial estimate of the urn from which offers are drawn is larger, in first-order stochastic
sense, than the truth.

Four comments about this definition are in order.

1. This definition captures the idea that the searcher thinks that he is better off than he
really is, since he believes that the urn from which offers are drawn is better than it
really is.

2. This definition encompasses other definitions of overconfidence that have been
put forward in most of the literature, and is “better” in the following sense. An
overconfident decision maker is often defined as one who thinks that some parameter
is larger than it really is. Formally, it is assumed that the individual’s beliefs are
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degenerate and wrong. An individual with those beliefs would never learn the true
distribution. My definition of overconfidence allows for those beliefs, but also for non-
degenerate beliefs which, with enough learning, could converge to the truth.

3. The findings in Alpert and Raiffa (1982) that people systematically construct too
narrow confidence intervals for random variables has been interpreted as a different
notion of overconfidence than the one studied here. | believe, however, that the findings
in Alpert and Raiffa (1982) are about how people think that their information is better
than it really is, so that “point estimates” of random variables are thought to be very
close to the true values. Therefore, those findings are also about overconfidence in the
sense of this paper.

4. In this paper, optimism is a relative notion, about one searcher being more optimistic
than another, whereas overconfidence is about how a searcher thinks he is, relative to
the truth.

Let o be the measure of? obtained by extending the probabilities thyainduces on
wT for all 7.8 For the welfare criterion, | use the true expected value of searching,

V& () =/8r”(‘”)a)rn(w)p(da)), 7 e P2(W).
2

As in standard search models, the rule that maximizes the true expected value of
searching is a stationary reservation wage policy. In addition, if a searcher is going to
deviate from the optimal policy just once, the longer he follows the optimal policy, the
higher is his expected payoff. Since there is a tendency for searchers to become pessimistic
(and pessimistic searchers accept low offers), slightly overconfident individuals follow the
truly optimal policy longer than unbiased searchers. As a consequence, in the following
example an overconfident individual obtains a higher payoff than an unbiased searcher
who is more pessimistic than the overconfident.

Example 3. Let W = {1, 2}, 8/11> § > 2/3, and f = (1/2,1/2). Then, the policy that
maximizes the true expected value of searching is to reject offers of 1 and accept the first
offer of 2.

Defineg,h € P(W) by g = (3/4,1/4) andh = (1/4, 3/4). Also, letr (h) =1—7n(g) =
3/4 andv(h) =1 — v(g) = 1/2. I will now show that the optimal search rule in this case
calls for rejecting offers of 1 until the expected value of the next draw falls bel@y 1
and then accepting any offer. If the continuation value of searching falls beléwtie
agent accepts the current offer, so it suffices to show that whenever the expected value of
the next draw falls below /B, it is equal to the continuation value of searching. Suppose
that the continuation value of searching after an offer of 1 is less than or equad.to 1
If the offer is rejected and = 1 is drawn in the next period, the continuation value will be
weakly smaller than it is today, which implies that the optimal strategy calls for accepting
any offer tomorrow. Therefore, if the continuation value today is belgdy it is equal to

6 See Shiryayev (1984, Kolmogorov Extension Theorem, p. 161).
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the expected value of the next draw. Also, for enough draws of 1, the continuation value is
close to that of a prior which assigns probability lute= 1. Thus, the continuation value
eventually falls below 5. Finally, since the expected value of the next draw is decreasing
over time, whenever it falls below/a it must be the continuation value.

Sincem p(1,1)(1) = 5/8, the expected value of the next draw after observing 1 is
11/8 < 1/5. Thus, the unbiased searcher stops sampling in the first period i» an§
and obtains a true value of searching?23Sincem p(1,r)(1) = 1/2, the expected value of
the next draw after the first bad draw ig23> 1/8. Therefore, the overconfident searcher
rejects the first low offer, but becauseg(1,1),7)(1) = 5/8 he accepts any offer in the
second period. This yields a true value of searching §13/4) > 3/2.

In this example, the overconfident searcher uses the true optimal strategy in period 1
whereas the unbiased one does not. As a consequence, the overconfident searcher is better
off when the true distribution is used to compute welfare. Note thatribithe case that
for some states of the world the overconfidence is better off (i.e., that he rejects a high offer
and by chance he gets a higher offer in the next period)ekfiectegayoff is larger than
that of the unbiased searcher.

4.1. The benefits of overconfidence and costs of underconfidence

This section provides a generalization of the last example. Consider the following three
features of the search model. First, the truly optimal search rule is a constant reservation
wage policy. Second, searchers become pessimistic as search evolves, so there is a tendency
for reservation wages to decrease. Third, overconfident searchers tend to have higher
reservation wages than unbiased individuals. These features insure that one can always
find overconfident searchers whose initial reservation wage is optimal and that, as search
evolves, make fewer mistakes (relative to the truly optimal search rule) than unbiased
searchers who are more pessimistic than the overconfident. These features are what drive
Example 3, and thus suggest that, when these conditions hold, overconfident searchers are
better off than unbiased ones. However, the following example shows that in general this
is false.

Exampled. Let W = {1, 2,100}, f = (1/3,1/3,1/3) ands = 58/1000. The truly optimal
strategy is to accept only offers of 100. A searcher who follows the optimal strategy in
period 1 and then accepts any offer, obtains an expected payoff ¢gB100206/9)§.
Rejecting only offers of 1 in the first period and accepting any offer in the second yields a
payoff of 34+ (103/9)§ > 100/3 + (206/9)5. Therefore, following the optimal strategy in
the first period is harmful. In the reminder of the example | show how the above behavior
can be derived from overconfident and unbiased priors.

Let j = (1/1000Q 1/100Q 998/1000 and g = (999/200Q 999/200Q 1/1000. Define
the overconfident priorr by 7(j) =1 — 7(g) = 0.98569 and the unbiased prior by
v(j) =1—v(g) =0.33266. Ifw = 100 has not occurred in periods 1 or 2, the expected
value of the next draw is lower than/d for both searchers, so they stop sampling.
Therefore, the searchers know in period 1 that offers that yield a value smaller than the
discounted expected value of the next draw must be accepted. &inge)[(w] > 2,
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the overconfident searcher only accepts offers of 100 in the first period. Since 2
S8Ep@.uvlw]l =8Ep1.v[w] > 1, the unbiased searcher only rejects offers of 1 in the first
period.

The example illustrates the point that if the optimal policy is not going to be followed
tomorrow, it may not be optimal to follow it today. Therefore, although overconfident
searchers may follow the optimal strategy more often than unbiased searchers, they are
not always better off. To insure that overconfident searchers will be better off, it suffices to
assume that searchers are not too patient. If they are impatient, the truly optimal policy is
to reject all offers but the lowest. Then, because the individual receives in each period only
worse news than he could imagine, reservation wages are decreasing. This, in turn, insures
that the only possible deviation (for a searcher who starts off with the optimal reservation
wage) is to accept any offer. Consequently, when searchers are not too patient and start
off with the optimal reservation wage, they deviate from the optimal policy just once. This
guarantees that overconfident searchers make exactly the same mistake as the unbiased
individuals, but in a later period, in which case overconfident searchers are better off.

To formalize these arguments | first show that, if an individual would accept the
next-to-the-lowest offer to which he assigns positive probability, his reservation wage is
decreasind.

Lemma 3. Suppose that a searcher with monotonic priofollows a reservation wage
policy and thatwy > 8V (). Then,8V (B(w'~1, 7)) > 8V (B(w', 7)) for all w € 2 and
all z.

Suppose that the optimal search rule calls for acceptingnd rejecting offers below
that. Assume also, that in the previous lemma is overconfident. Then, whenexsr
search rule differs from the optimal one, he is accepting offers that he should not. Consider
an unbiased searcher with 7= > v. By Proposition 2, the unbiased searcher makes
a mistake before the overconfident does, and this makes him worse off. A similar reasoning
applies to show that underconfident individuals are still worse off. This is summarized
in Proposition 4. For any € P2(W), any e > 0 and metricd, define N, (v) = {r €
P2(W): d[m,v] <€}

Proposition 4. Define the priorv® by v0(f) = 1. Then, there exis such that if§ > §,

(i) for any e > 0 there is an unbiased € N, (v°) and an overconfident such that
7 >vandV®(x) > V®(v). Moreover, if £ ([0, 8V (v°))) > 0, V¥ () > V¥ (v);

(i) there existsy > 0 such that for all unbiased € N, (19 that follow a reservation
wage policy, ifp is an underconfident prior with > ¢, thenV¥® (v) > V¥ (p).

Proposition 4 says that there exists an unbiased searcher who is almost certain about the
truth and a more optimistic overconfident searcher who is better off. The proof also shows

7 Bikhchandani and Sharma (1996) provide sufficient conditions on priors to insure that searchers follow
reservation wage rules.
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that the unbiased prior is closer to the truth, in the metri®@3¢W), than the overconfident

prior. Therefore, the result is not about the searcher being overconfident but being “closer”
to the truth than an unbiased decision maker. Second, it is overconfidence, and not an
arbitrary bias, that makes the overconfident searchers better off. Underconfident searchers
are still worse off. The reason driving this last result is that ¢ and Proposition 2 insure

that whenever accepts an offekp also does. Then, since the most likely mistakespf
relative to the optimal policy, is to accept an offer that should be rejected, whenever
makes a mistakey also does. Again, the reason why the most likely mistake is to accept
an offer that should be rejected is that in search problems there is a tendency for beliefs
to decrease over time, and a searcher whose prior is close to the truth starts off with the
correct reservation wage.

Of course, these results may seem puzzling. In particular, should an individual, knowing
that he will become more pessimistic over time, choose to behave as if he was not updating?
No. But one could try to avoid the bias that | point to by trying to use all the draws that other
individuals in a “peer group” receive on each date. In that way, no bias is introduced. But
of course, after a few bad draws the individual could start updating about the probability
that his peer group is really his peer group, and the problem mentioned in this paper arises
again.

4.2. The costs of overconfidence

Proposition 4 shows that overconfident searchers are sometimes better off than unbiased
decision makers. In this section, | examine the reasons why the converse may hold. The first
reason why overconfidence can be harmful is the one illustrated in Example 4: following
the optimal policy more often than not is not always beneficial. The second one is obvious:
overconfident searchers may reject high offers that they should accept. However, since it is
easy to construct examples where overconfident searchers with large biases are better off
than unbiased searchers, the condition when searchers are stubborn (and keep making their
original mistakes) needs to be added.

Consider an individual with priors close to the degeneraté. By continuity of V
(see Corollary 10 in the Appendix) one can make sure that, for almost any discount factor,
the search rule of resembles that af° for a long period of time. Therefore, discounting
insures that’#, the true value of searching, is continuous&tThen, forv andx close to
the degenerate® andz?, respectivelyyV# (v°) > V¥ (7% guaranteey # (v) > V¥ (x).

The result is summarized in the following proposition, which is just a statement about
continuity of the true value of searching.

Proposition 5. Fix any degenerate priorst® and v°. Assume thatf(sV (v°)) =
F(V (%) =0andV®?@°% > v# (. Then, there exists such that for allr € N (7°)
andv € N (v9), V®(v) > V¥ ().

The third reason why overconfident searchers may obtain lower payoffs than unbiased
searchers is that reservation wages may be increasing for some offer paths. When
reservation wages increase, even slightly overconfident decision makers will reject offers
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that they should accept. Although in general reservation wages do not increase, the
following example shows that for some offer paths reservation wages may be increasing.

Example5. Let W = {1, 2, 3, 4}, § = 0.99 and defing, j € P(W) by g =(0,5/12,1/2,
1/12) and j = (1/3,1/3,1/3,0). Also, for 1> ¢ > 0, define priorsz€ by n€(g) =
1—7€(j) =e.

Sinces is close to 1, a searcher with belief§ accepts only offers of 3 and 4. Thus,
for € sufficiently small, the same is true for a searcher with belefsSuppose that some
offer pathw starts withs draws ofw = 2. Because (2) > j(2), for sufficiently larger,
B(w', ¢) assigns probability close to 1 i@ Consequently, for sufficiently large the
searcher accepts only offers of 4.

Therefore, the searcher with priot§ accepts offers of 3 at the beginning of the search
process, but after enough draws of 2, he only accepts proposals-af. The reservation
wage increases because an offer that is rejected at the start of the search process (i.e., a low
offer) signals a good distributich.

Adding an appropriate true distribution to this example, it is easy to show that
overconfident searchers may be worse off than some unbiased individuals.

5. Evolution of beliefs

In this section, | give conditions that guarantee that true average posteriors diminish over
time for overconfident priors. | first show that, although unbiased priors remain unbiased,
overconfident beliefs may become underconfident. Then | show that, if there is an unbiased
belief that is more pessimistic than the overconfident prior, the bias diminishes over time
and the overconfident does not become pessimistic on average.

Suppose that is unbiased. Then, by the law of iterated expectatiofiy g, v)1 = f.

That is, on average, unbiased searchers remain unbiased. The following example shows,
however, that an overconfident prior may become pessimistic on average.

Example 6. Let W = {1,2, 3}, defineg, f,j € P(W) by g = (3/4,1/4,0), f =
(1/2,1/2,0), j = (0,0,1). Define priorsmt by n(g) = 7 (j) = 1/2. Since only offers

of 1 and 2 will occur, the posterior of is alwaysg = (3/4,1/4,0). Thus, although

7 is overconfident, he becomes underconfident with probability 1. But this implies that
S Ef[mB(w,rr)]-

In the example, an unbiased belief that is more pessimisticthdoes not exist. For
any unbiased belied, E,,,[m pu,v)] = m, implies thatm g,y > m, = (1/2,1/2,0) >
(3/4,1/4,0) = mp2.x), SO first-order stochastic dominance of the marginals is not
preserved, violating the definition of optimism. That is, while 2 is good news,fat

8 |n Burdett and Vishwanath (1988) this possibility is ruled out assuming that the cost of search is large, which
insures that only “very” low offers are rejected.
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is “very” bad news forr, and that causes their order of optimism to be reversed. If there
existed an unbiased prior which was more pessimistic thathe overconfident would
remain overconfident on average. The reason is that the average posterior of the unbiased
belief is a lower bound for the average posteriorofSince the unbiased prior remains
unbiased on average, the overconfident remains overconfident. The following proposition
is a generalization of the previous argument.

Proposition 6. Fix any prior = such that there exists an unbiased belief which is either
more optimistic or more pessimistic than If  is overconfident,

my &> Ego[mB(wt—l,n)] > Ebo[mB(w’,n)] > f
for all ¢, and conversely ifr is underconfident.

Proposition 6 states that, for overconfident priors for which there is a more pessimistic
unbiased belief, the true average posteriors decrease but never fall below the truth. They
decrease because updating is, essentially, averaging priors and the information received
and offers are generated by a distribution that is lower than beliefs in first-order stochastic
sense. The overconfident beliefs do not fall below the truth because they are bounded from
below by the unbiased priors which are martingale.

A corollary of Proposition 6 is that beliefs are martingale for unbiased priors. That is, the
agent’s true average beliefs about the distribution that generates the offers do not change
over time. This is not the usual “beliefs are martingale” claim of the literature on learning
as, for example, in Kalai and Lehrer (1993). In that literature, the relevant distribution
with respect to which the expectation is takemigs. Hence, in that context, “beliefs are
martingale” means that one cannot expect any change in his beliefs. Here, the distribution
with respect to which the expectation is taken, is the true meag&uféus, the result is a
statement about the true, and not subjective, evolution of beliefs.

6. Concluding remarks

One can apply the results on behavior and evolution of beliefs to obtain a testable
implication of overconfidence. Suppose that the search problem was to be repeated a
number of times, called spells, and that each problem were solved myopically. In addition,
following Proposition 6, suppose that the overconfident’s prior at the beginning of today’s
spell is dominated by his beliefs at the start of the last spell. Then, Proposition 2 insures
that the expected search times decrease from spell to spell. On the other hand, an analogous
construction for unbiased searchers yields constant spell lengths. Hence, one may be
able to test whether people are overconfident through the analysis of search behavior of
unemployed workers. This is very important, since it has been argued that most “evidence”
for overconfidence comes from experimental and psychological evidence, and not from
actual economic behavior and data.

There are, at least, four criticisms that have been put forward against this test of
overconfidence. The first, and most obvious, is that if one observes search spells, they
tend to get longer over time, so that one could conclude that what is pervasive is
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underconfidence. The problem with this criticism is that it fails to take into account the
fact that the observation of search spells does not control for age. To be clear, suppose that
search spells tend to get longer with age, conditional on the number of search spells. If this
were the case, one would observe longer search spells only because of the age factor. Using,
for example, the NLSY data, one can control for age, and get the “pure” belief effect.

A similar comment applies to the criticism that spells might be getting shorter because
older searchers have larger families to support, and hence hit their budget constraints
earlier. In this case too, the NLSY data has information on family sizes, so family size
can also be controlled for, just as age can.

A second criticism that has been put forward is that by just observing search spells one
cannotrule out that spells are getting longer due to the fact that employers could be learning
about the quality of workers (see Berkovitch, 1990). According to this theory, a firm who
hires a worker gets to know his quality, and bad workers are fired more often. Also, a
worker who is likely to be of bad quality, receives low offers, and thus has shorter search
spells. Therefore, one more search spell in somebody’s vita would indicate lower quality,
and thus induce a shorter search spell. So this theory also predicts shortening search spells.
This factor can be controlled for by carrying out the proposed test only among blue-collar
workers where the complete past search history cannot always be observed by employers.

A third criticism that might arise is that searchers could be learning how to search
over time, thus leading to shorter search spells. This hypothesis should then lead to
the observation of constant, or increasing, accepted wages over time. If individuals are
overconfident, however, accepted offers should tend to decline, so that one can tell the
theories apart.

A fourth and last objection to the proposed test is that it is possible that search spells
are getting shorter spell by spell, not because searchers are learning about the mean of
the wage offer distribution, but about its variance. If more dispersed beliefs lead to longer
search spells, as is usually the case, learning about the distribution would lower the search
spells. At present | do not know how would one control for this last factor.

The results on welfare also suggest that one can build models where the pervasiveness
of overconfidence is the consequence of evolutionary selection. In pre-agricultural
societies subsistence depended on search activities, such as hunting and gathering. Thus,
if overconfident searchers were better off than unbiased searchers, and that favored their
reproduction, their progeny should tend to be overconfident.

An important technical open problem is whether the definition of optimism given in
this paper is also necessary in dynamic problems of any kind. It can be easily shown
thatif r > v, thenE; (u(wa, ..., w;)) > E,(u(wy, ..., w,)) for anyu that is increasing
in w; (the wage received in period for all i. The question is then whether > v
is also a necessary condition. Miller and Stoyan (2002, Theorem 3.3.4) prove that
E;(w(wy,...,w)) = E,(u(ws, ..., w,)) for all increasingu if and only if = assigns
a higher probability to all sets such thatuf is in the set, every > w is also in the
set. The problem with this condition is that it is very hard to check, so a characterization
of optimism in terms of the marginals of the beliefs, such as the one given in this paper,
would be very useful.

In closing, | note that all the results of this paper, except those on welfare, can be
easily extended to the case of arbitra#yC R. Also, all of this paper can be extended
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to the case where the individual can choose a search effort that affects his chances of
receiving an offer. To understand why this is so, one must only note that the model in this
paper can be thought of as the model with search effort, when a particular sequence of
search efforts has been chosen. One then needs to optimize with respect to the sequence
of search efforts. The results on behavior of this paper extend to that setting because, as
was argued in the previous section, the definition of optimism given in this paper yields
the correct comparative statics in a wide variety of contexts. The results about the welfare
implications of overconfidence also extend to the model with search effort because the
basic force behind those results is also present in the more general model: beliefs tend to
decrease over time so that unbiased searchers stop sampling before they should, whereas
slightly overconfident individuals make this kind of mistake less often.
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Appendix

Measuresu, over X converge weaklyo u, denotedu, = u, iff [ y(x)u,(dx) —
[y()u(dx) for all y € C(X). For 4 € P(X) and measurablé:: X — R, define
uh=(C) = w(h=1(C)) for all measurable&. The following is a corollary to Billingsley
(1968, Theorem 5.5).

Lemma 7. Let {u,}, u € P(X), h:X — R be continuous and;,: X — R converge
uniformly tok asn — oco. Then,u, = w impliesp,h;t = ph=t.

Lemma8. B(w,-): P2(W) — P2(W) is continuous.

Proof. Fix anyy € C(P(W)). | have to show that, = = implies

/hn(g)zrn(dg)E / wﬂn(dg)_) / wﬂdg)

My, (w) my (W)
P(W) P(W) P(W)

= / h(g)m(dg).
P(W)

The range;, of eachi, is bounded. Then, sing@,(W) h,(g)m,(dg) = fr” ynnh;l(dy),
it suffices to show that,,h;l = wh~L. Sinceh, converges uniformly té, continuity ofx
and Lemma 7 will complete the proof.
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By finiteness ofW, for arbitrary w;, g, = g implies g,(w;) — g(w;). This, and
continuity ofy guarantee thay (g,) g, (w) — y(g)g(w)| — 0. Noting thath(g,) —h(g)| =
|y (8n)8n(w) — y()g(w)|[mx (w)]~* completes the proof. O

Lemma 9. For {r,,}$°, = € P2(W),

/y(B(w,nn), w)mnn[dw] — /y(B(w,n), w)mn[dw]
1% 114
if ye C(S) andr, = .

Proof. Lemma 8 and finiteness a¥ guarantee thai, (w) = y(B(w, 7,,), w) converges
uniformly in w to A(w) = y(B(w, ), w). In addition,m,, = m,, so Lemma 7 completes
the proof. O

Proof of Lemma 1. Proofs of continuity when search has stopped and of bound-
edness are trivial and will be omitted. Assumg = 7. Since fSy(s)C,,n[ds] =
[W y(B(w, 7y), w)mg, [dw], Lemma 9 completes the proofo

Using continuity ofv, we obtain the following trivial corollary.
Corollary 10. V : P2(W) — P2(W) is continuous.

Lemma 11. Assume thair > v and that eitherr or v is monotonic. Then, for all and
we 2, V(B )= V(BW,v)).

Proof. | will say that y € C(S) is non-decreasing ify(w, w) > y(v, w) whenever
7 > v and eithermr or v is monotonic. LetN(S) C C(S) be the set of non-
decreasing functions off. Since K maps N(S) into itself and N(S) is closed, the
value functiorw is non-decreasing. if is monotonicV (r) > [ v[B(w, v), wlmy (dw) >
Vr (v). The first inequality follows from non-decreasingness a@indx > v. The second,
because[B(w, v), w] is hon-decreasing im for monotonic priors. The result follows
because monotonicity angd are preserved by updating. For monotoniche proof is
symmetric. O

Proof of Proposition 2. Let p be as in the definition of optimism. Given the optimal
policy, V(B(o', ) = V(B(e', p)) = V(B(', v)) for all r andw € 22 will complete the
proof. The result then follows from Lemma 110

Proof of Lemma 3. Given thatwy > 8V (i), in the first period, search continues
only if the first draw iswi. Since priors are monotonic and, = E,;, [mpw,m)],

7 > B(wi, 7). Sincer > B(wy, ) and both are monotonic, Lemma 11 insures that
8V (m) =28V (B(w1,m)). Then,wz > 8§V () > 8§V (B(w1, m)). Hence, in period 2, search
continues only ifw1 occurs. Again,B(wi, ) > B(w1, w1, ), SO 8V (B(wi,)) >

8V (B(w1, w1, m)). Continuing in this manner, the result followst
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Lemma 12. For any Dirichlet & = (71, 72, ..., 7m,), w1 = 8V () implies V(r) =
[ wmy (dw).

Proof. Sincew; > §V (B(wy, 7)) implies thatV (7) = [ wm (dw), it will suffice to show
that V() > V(B(w1,7)). Then, V(x) > fmax{w,éV(B((wl,wl),n))}mn(dw) >
V(B(w1, 7)). Thefirstinequality follows fronB(w, 7) > B((w1, w1), 7) and Lemma1l.
The second, since max, 8V (B((w1, w1), 7))} is strictly increasing and > B(w1, ).

O

Proof of Proposition 4. Trivially, for any f there existss such that for all§ > §,
wo > 8V (v0). Then, (i) follows directly from Theorem 2, Lemma 13, and Lemma 3.

To prove (i), | will find Dirichlet priors for unbiased and overconfident searchers. For
s > 0, letv® be a Dirichlet prior with parametétfy/s, fa/s, ..., fn/s). For smally > 0,
let f, € P(W) be defined byf, = (f1 — v, f2+v,..., f») and leta? be degenerate
in f,. Forally >0, V(&) > V (19, so continuity ofV guarantees that for smaf,
SV(a?) e (8V (%), wp). Definer® = 7 and, fors > 0, letz* be a Dirichlet prior with
parametef(f1 — y)/s, (f2+7¥)/s, ..., f2/s). Then, continuity of8 and of V guarantees
that there exists afi such that for alls < S, §V (B(wo, %)) € 8V (v°), w»). Hence, for
all s < 8, n* satisfies the conditions of Lemma 3. This implies thawill never reject an
offer that he should not. Thus, for allall w ands < S, §V(B(e', %)) > 8V (B(e', v*)).
To show that being overconfident is strictly better off than being unbiased, it suffices to
prove that for some history with positive probability, the searcher with préraccepts
w1 and withz* rejects it.

Let w) denote a sequence ofiraws ofw1. Then, for allr, p{w: o' = w]} > 0. It will
suffice to show that for someand some, §V (B(w}, v*)) < w1 < 8V (B(w, 7%)).

Fix s1 < S. Since, fors large enoughB(w}, v*1) is close to a degenerate belief in
a distribution that is degenerate im, continuity of V implies 8V (B(w], v*)) < wi.
Then, §V (B(wj, v%) > w1 and continuity of V and B guarantees that for some
s2 < 51, V(B(w},v*2) = wi. Then, by Lemma 12w;/8 = /me(wa’Usz)(dW) <
fwn;B(u)i’nsz)(dU)) < V(B(w],7%2)). Letting 7 = 7*2 and v = v®2 completes the
proof. O

For eachr € [0, 1], let r, denote the true value following the policy “in time if in
the dyadic expansion eftherth elementis 1, accept iff w > x; if the tth element is O,
acceptw iff w > x.” If r has two expansions, the choice between them is irrelevant.

Lemma 13. For degenerater® € P2(W), V¥ is continuous atr® iff Oy (0, = Ly (z0)-

Proof. | will first show sufficiency. Assume thats ;o) = Osy 0. It is easy to see, by
induction, that for allT, that if ¢, » € [0, 1] have a constant string of 0 or 1's aftér,
dsv(x0 = Tsy(z0)- By continuity of V, for fixed y > 0 andT < oo, | can choose > 0
so that for allxr € N (7%, all t < T andw € 2, V(B(o', 7)) € N, (V(x®). Then,
for everyw € £2 there exists some(w) € [0, 1] with 15y 0y = r(w)sy 70y, SUch that
the choices made by a searcher with priowho follows the optimal strategy are the
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same as those dictated byw) for 1 < T. Note that for allw and’, ther’s chosen are

such that (@)sy (0, = (@)sy (x0) = Ly (x0) = 5y (z0)- Then, 1 getV ¥ (x®) — V¥ (x)| =

|Fsv (z0) — V¥ ()| < 87 w,. Noting thatT” was arbitrary completes the proof of sufficiency.
Assume 1y 0, # Oy 0y and letz® be degenerate ify1. g2, . .., g,) € P(W). Since

gi = 8V (n% for somei < n, let 7° be degenerate ifig1,...,qi — €, ...,qn + €)

for €, | 0. Then, for alls, V(x*) > V(x% and for larges, |V®(#x%) — V®(#x*%)| =

115y (o) = Osv(z0)| #0. O

Proof of Proposition 5. {V (v9), V(#®} N {w: f(w) > 0} = ¢ insures that the condition
for Lemma 13 is met, s&® is continuous both at® andv®. O

Proof of Proposition 6. The part of overconfidence will be proved by induction.
The other is analogous and will be omitted. Monotonicity amg > f guaran-
tee that [, 1. mpw ) (d)my(dw) < [y, [* mpwo(d) f(dw) and thus,m, >
E f[mpw.x)]. By assumption, there existssuch thatf m gy, ) f (dw) &> [ mpa,v) f(dw)
= [ mpw,vymy(dw) =m, = f.

Assuminng[mB(wtflm] > f, EEgo[mB(wzfl’ﬂ)][mB(w’JT)] = Eplmpy-1m1)] and mo-
notonicity, guarantees thadt, [m g1 7)1 > Eplmpr,m)]1- Finally, for unbiased> with
T2, Ebo[mB(w’,n)] > Ego[mB(w‘,v)] =f. O
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