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Abstract

We prove that the English auction (with bidders that need not be ex ante identical and may have inter-
dependent valuations) has an efficient ex post equilibrium. We establish this result for environments where
it has not been previously obtained. We also prove two versions of the Stolper–Samuelson theorem, one
for economies with n goods and n factors, and one for non-square economies. Similar assumptions and
methods underlie these seemingly unrelated results.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

A similar mathematical structure, comparative statics of the solution of a system of equations,
underlies diverse economic results such as the efficiency of the English auction and the Stolper–
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Samuelson theorem. We find that related assumptions on the system of equations allow us to
extend, significantly, the domain of application of both results. We prove that the English auction
has an efficient ex post equilibrium in environments where this result had not been previously
obtained. We also prove versions of the Stolper–Samuelson theorem for economies with more
than two goods and factors, and for non-square economies.

Consider the system of equations

v1(s1, s2, . . . , sn) = p1,

v2(s1, s2, . . . , sn) = p2,
...

...
...

vn(s1, s2, . . . , sn) = pn, (1)

where s1, s2, . . . , sn are the unknowns, p1,p2, . . . , pn are the parameters, and v1, . . . , vn are
functions. How does the solution (s1, . . . , sn) respond to changes in the parameters (p1, . . . , pn)?
To provide a meaningful answer to this classic question, restrictions must be imposed on the
functions v1, . . . , vn.

Our assumptions have the flavor of a “relative sensitivity” requirement. Suppose each func-
tion vi is relatively more sensitive to one variable (which we will call “its own” variable) than
to the others. If the effect of such variable si on vi is an “own” effect, we might require that the
own effect be relatively more important than the “cross” effect, the effect of si on vj . Suppose
for instance that n = 2 and that v1(s1, s2) and v2(s1, s2) are increasing functions. Let parame-
ters change so that p′

1 > p1 and p′
2 < p2. Since v1 and v2 are increasing, s1 and s2 cannot both

increase or decrease simultaneously. Our “relative sensitivity” implies, as a consequence, that
s′

1 > s1 and s′
2 < s2. We warn the reader that our formal assumption varies with the application

considered, and that it differs from the discursive version in this paragraph. Still, the intuitive
rendition illustrates its use.

We now describe how a similar formal structure underlies both applications, the efficiency of
the English auction and the Stolper–Samuelson theorem. For expositional ease, we begin with
the latter.

Consider an economy with two goods, two factors of production, and constant-returns-to-
scale technologies. Let vi(s1, s2), i = 1,2, be the per-unit cost of producing good i given factor
prices (s1, s2). If output prices (p1,p2) are exogenously determined—the standard small-country
assumption in international trade—an equilibrium in the factors’ markets is the solution to

v1(s1, s2) = p1,

v2(s1, s2) = p2. (2)

The interpretation of (2) is that there are no extraordinary profits in the production of goods 1
and 2—a consequence of the combined assumptions, standard in international trade theory, that
both goods are produced in equilibrium and that the technologies are constant returns to scale.

The Stolper–Samuelson theorem states that if the production of good 1 is relatively more
intense in the use of factor 1, an exogenous increase in the price of good 1 brings about an
increase in the price of factor 1 and a decrease in the price of factor 2. Let K and L represent
factors 1 and 2 respectively, and let Ki(s1, s2) and Li(s1, s2) be the cost-minimizing quantities
of factors in sector i when factor prices are (s1, s2). Stolper and Samuelson’s factor-intensity
assumption is that

K1(s1, s2)
>

K2(s1, s2)
. (3)
L1(s1, s2) L2(s1, s2)



J. Dubra et al. / Journal of Economic Theory 144 (2009) 825–849 827
Using Shepard’s lemma, however, the factor-intensity assumption can be stated as

∂v1(s1, s2)/∂s1

∂v1(s1, s2)/∂s2
>

∂v2(s1, s2)/∂s1

∂v2(s1, s2)/∂s2

for all (s1, s2). It is this formulation in terms of average cost functions that facilitates our
approach. Stolper and Samuelson’s factor-intensity condition is an instance of our “relative sen-
sitivity” property. Expressed as an inequality of factor ratios, the factor-intensity condition does
not readily generalize to economies with more than two goods and two factors. We will make
our “relative sensitivity” assumption on the average cost curves, and this allows us to extend the
notion of factor-intensity to economies with more than two factors, and to non-square economies.
In turn, this leads to new versions of the Stolper–Samuelson theorem.

We turn to our auctions application. Consider an English auction where two (ex ante) different
bidders have interdependent valuations. Bidder i, i = 1,2, only observes her private signal si
before the auction, and i’s valuation for the object is vi(s1, s2). If p is the price quoted by the
auctioneer, a solution (s1(p), s2(p)) to the system

v1(s1, s2) = p,

v2(s1, s2) = p (4)

indicates that both bidders are indifferent between getting the object and abandoning the auction.
If the solution (s1(p), s2(p)) to (4) is increasing in p, then it has an inverse (p1(s1),p2(s2)). This
inverse function can be used to construct bidding strategies: bidder i with signal si will remain
in the auction until the auctioneer arrives at price pi(si). Under certain “relative sensitivity”
assumptions on the value functions, it can be shown that these bidding strategies implement an
efficient ex post equilibrium in the English auction.

The question of whether English auctions have efficient ex post equilibria in the environments
described, was first posed by Maskin [10]. He studied the two-bidder case and assumed a “single
crossing condition,” namely that

∀(s1, s2),
∂v1

∂s1
(s1, s2) � ∂v2

∂s1
(s1, s2). (5)

This condition captures the notion that si is more important for vi than for vj , j �= i and it
therefore belongs to the “relative sensitivity” family of assumptions. Maskin proved that his
condition implies that a solution (s1(p), s2(p)) to (4) exists, that it is unique and increasing, and
that the implicit bidding strategies implement an efficient ex post equilibrium.

Maskin’s result, however, does not extend to auctions with more than two bidders. Krishna [9]
describes a three-bidder example, satisfying Maskin’s single-crossing property (applied pair-
wise), where the English auction does not have an efficient equilibrium.1 Our “relative sensitivi-
ty” allows us to prove the existence of ex post efficient equilibria with arbitrarily many bidders.

The reader will have noticed that Stolper and Samuelson’s factor-intensity condition and
Maskin’s single crossing property are very similar.

1 Krishna attributes the idea of the example to Phil Reny. Krishna also introduces alternative conditions to Maskin’s
single crossing property that restore the existence of efficient equilibria for environments with the n bidders. We compare
our results to Krishna’s below.
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2. The Stolper–Samuelson theorem

We prove two versions of the Stolper–Samuelson theorem. The first one applies to square
economies with n goods and factors of production; the second applies to non-square economies.

Consider a standard international-trade model. There are n non-traded, non-produced factors
used in the production of n traded, final goods. Factor endowments are owned by consumers
who offer them inelastically. Inputs are not consumed. A small-country assumption implies
that the prices p = (p1, . . . , pn) of the n consumption goods are exogenously given. The en-
dogenous vector of factor prices is denoted by s = (s1, s2, . . . , sn). The production technol-
ogy exhibits constant returns to scale. The unit cost of producing good i given factor prices
(s1, s2, . . . , sn) is vi(s1, s2, . . . , sn); the cost of producing yi units of good i is then vi(s)yi . An
equilibrium in this model is characterized by the zero-profit conditions: A combination of prices
(s1, s2, . . . , sn,p1,p2, . . . , pn) is an equilibrium if pi = vi(s1, s2, . . . , sn) for all i.2

Stolper and Samuelson [14] further assume that there are only two goods and two factors, that
the per-unit cost functions vi are differentiable, and that the production of good 1 is relatively
more intense in the use of factor 1 as discussed in the Introduction. The thesis of their theorem is
that an exogenous increase in the price of good 1 brings about an increase in the price of factor 1
and a decrease in the price of factor 2.

Of their extra assumptions, we only need the “relative sensitivity” assumption, a notion of
factor-intensity that can be applied to more general economies than those studied by Stolper and
Samuelson.

Let

P(s′ − s) = {
i = 1, . . . , n: s′

i − si > 0
}
.

The set P(s′ − s) identifies the coordinates that have increased, the strictly positive coordinates
of (s′ − s).

Definition 1. The functions v1, v2, . . . , vn satisfy the dominant-effect property if, for any s and s′
with P(s′ − s) �= ∅,

max
i∈P(s′−s)

vi(s′) − vi(s) > max
j /∈P(s′−s)

vj (s′) − vj (s).

The dominant-effect property is a relative-factor-intensity assumption. In the two-factor–two-
good case, it states that if the price of factor 1 increases and the price of factor 2 decreases, then
the cost of good 1 must increase more than the cost of good 2 (or the cost of good 2 must decrease
more than the cost of good 1). That is to say, the production of every good i must be relatively
more intense in the use of the factor i. Indeed, with differentiable cost functions and n = 2, the
Stolper–Samuelson factor-intensity assumption 3 implies the dominant-effect property.

The dominant-effect property generalizes the notion of relative factor-intensity to economies
with more than two goods and with non-differentiable cost functions. Suppose several factor
prices change simultaneously. The dominant-effect property requires that one of the goods whose
“corresponding factor-price” has increased must have a larger cost-increase than the cost-increase
of any good whose “corresponding factor-price” decreased.

2 Implicit is the assumption—standard in trade-theory—that all goods are produced in equilibrium: pi could be less
than vi (s1, s2, . . . , sn) if good i were not produced.
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Theorem 1. Let v1, v2, . . . , vn be non-decreasing average cost functions that satisfy the
dominant-effect property. Let the price-vectors (s,p) and (s′,p′) be equilibria. If p′

i > pi for
some good i, and p′

h � ph for all h �= i, then s′
i > si .

If, in addition, the functions v1, v2, . . . , vn are strictly increasing, then s′
h < sh for at least one

h �= i.3

Proof. Since (v1, v2, . . . , vn) are non-decreasing and p′
i > pi , it cannot be the case that s′ � s.

Therefore P(s′ − s) is non-empty.
We prove that i is in P(s′ − s). Suppose that i is not in P(s′ − s). Then, by the dominant-

effect property, for some h ∈ P(s′ − s), p′
h − ph > p′

i − pi . A contradiction, since p′
i − pi > 0

and p′
h − ph � 0 for all h �= i. We conclude that i is in P(s′ − s).

If the functions v1, v2, . . . , vn are strictly increasing, then s′ > s implies p′
h > ph for all h.

Since p′
h � ph for all h �= i, it cannot be the case that s′ > s. Thus, there is h such that s′

h −sh < 0;
h cannot be equal to i, as s′

i − si > 0. �
In the two-factor–two-good case, Theorem 1 states that if a country opens up to trade and as

a consequence p1 increases while p2 either decreases or stays the same, then the price of factor 1
will increase and the price of factor 2 will decrease. Thus the owners of factor 1 will gain and the
owners of factor 2 will lose from opening up to trade.

In the n-factor–n-good case, Theorem 1 states that, if p1 increases, and ph either decreases
or stays the same, for all other goods h, then the owners of factor 1 will gain, and the owners of
at least one of the other factors will lose. Note that the thesis of Theorem 1 is weaker in this case
because it does not say that s′

h < sh for all h �= i.4

Theorem 1 delivers the message of the Stolper–Samuelson theorem in considerable generality.
It is global because, unlike the Stolper–Samuelson theorem, it applies to any changes in prices,
not only infinitesimal changes. In summary, the differences between Theorem 1 and Stolper and
Samuelson’s statement are as follows.

(1) Stolper and Samuelson’s relative factor-intensity condition for two goods is stronger than the
dominant-effect property.

(2) Stolper and Samuelson’s conclusion is local; the conclusion of Theorem 1 is global.
(3) Stolper and Samuelson require that the cost functions (v1, v2, . . . , vn) be differentiable, and

that the Implicit Function Theorem be applicable; Theorem 1 does not.
(4) Stolper and Samuelson’s version of the theorem only holds when n = 2 (see, for example,

Chipman [2]).

The original Stolper–Samuelson theorem, and its generalization in Theorem 1, share the as-
sumption that the number of final goods is the same as the number of factors. This is probably
unrealistic. We offer a generalization of the Stolper–Samuelson theorem that avoids this assump-
tion. The generalization is obtained by simply varying the dimensionality of the variables si
and pj from scalars to vectors. Then, the same framework used in Theorem 1 yields the desired
extension.

3 A function vi (s) is strictly increasing if s′ > s implies vi (s′) > vi(s); it is non-decreasing if s′ � s implies vi (s′) �
vi (s).

4 Chipman [2] calls this statement the weak Stolper–Samuelson theorem.
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We can identify the technologies behind each vi with a sector, producing a collection of mi fi-
nal goods. Hence, vi(s) is a vector in Rmi , and so is the corresponding parameter pi in system (1).
The vector pi in Rmi is the vector of prices for the mi final goods produced by sector i. The total
number of final goods produced is the sum of goods produced by all sectors, i.e., M = ∑n

i=1 mi .
For each sector i there is a group of ki factors that are used more intensively in sector i.

(We make this precise below in the formal definition.) In terms of the model, the variable si
belongs to Rki ; si represents the vector of factor-prices corresponding to the ki ‘factors used
more intensively in sector i.’ The total number of factors in the economy is simply the sum of all
groups of factors, i.e. K = ∑n

i=1 ki .
Each sector i has a constant-returns technology that can be represented by an average-cost

function vi : RK → Rmi .
We have thus redefined system (1) so that all variables are vectors. If we set ki = 1 = mi for

all i = 1, . . . , n, we are back in the framework of Theorem 1, an n-sector economy with n final
goods and n factors. If in addition n = 2, we have the classic Stolper–Samuelson environment.

We now adapt the dominant-effect property to the new environment, and to do so, we must
look at the set P(s′ − s) that figures conspicuously in its definition. Given s′, s, and an order 	,
let

P(s′ − s) = {
i = 1, . . . , n: s′

i − si 	 0
}
.

In our previous applications when si was a scalar, the order 	 was the standard order on the
real line; the meaning of s′

i 	 si is simply s′
i > si . In the new environment si is a ki -dimensional

vector and therefore we have options in defining s′
i 	 si . We choose the following order

s′
i 	 si if and only if s′

i � si

yielding

P(s′ − s) = {
i = 1, . . . , n: s′

i − si � 0
}
.

We will briefly comment on alternative definitions of 	 after we state the theorem.
We are now ready to state the adapted dominant-effect property. The functions v1, v2, . . . , vn

satisfy the adapted dominant-effect property if for any s′ and s with P(s′ − s) �= ∅,

max
{�=1,...,mi : i∈P(s′−s)}

v�i(s′) − v�i(s) > max
{�=1,...,mj : j /∈P(s′−s)}

v�j (s′) − v�j (s),

where v�j (s) is the �th component of the mj -dimensional vector vj (s).
The adapted dominant-effect property is simply an expression of the factor-intensity assump-

tion, as discussed for square economies.
As before, we say that a pair of prices (s,p) is an equilibrium if pi = vi(s) for i = 1, . . . , n.

Theorem 2. Let v1, v2, . . . , vn be non-decreasing and satisfy the adapted dominant-effect prop-
erty. Let (s,p) and (s′,p′) be equilibria. If p′

i > pi for some good i, and p′
h � ph for all h �= i,

then there is 1 � � � ki such that s′
�i > s�i , where s�i is the price of factor � within the group of

factor prices si .

The proof is similar to that of Theorem 1 and therefore we omit it. Alternative definitions
of the order 	 used, give rise to variations of the dominant-effect property and of the theorem
above. For instance, if we strengthen the adapted dominant-effect property so that s′

i 	 si if and
only if s′

i 
 si , the theorem then concludes that s′
�i > s�i for all �, � = 1, . . . , ki : the prices of all

factors (in which sector i is intensive) increase.
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We conclude the section with a discussion of related literature. There is a large literature on
generalizations of the Stolper–Samuelson theorem. We refer the interested reader to Ethier [5]
for a survey. The closest result to Theorem 1 is an application of the weak axiom of cost min-
imization (Ethier [5]). This application, however, barely retains the economic content of the
Stolper–Samuelson theorem because it does not say which factor-prices change as a result of
specific changes in goods prices.5 In trade theory, predicting who will win (and thus favor) an
opening to trade, is important. Contrary to Theorem 1, the application of the weak axiom only
gives the standard “average correlation” result between goods and factor prices: on-average-
higher good prices yield on-average-higher factor prices. On the other hand, the application of
the weak axiom does not require assumptions on v, it is purely a product of cost minimization.

When n = 2, Samuelson [13] also proved the Factor-Price Equalization Theorem: if v satis-
fies the relative factor-intensity condition, v(s) has a global inverse, so factor prices are uniquely
determined by p. In the context of trade, this implies that all countries that share the same technol-
ogy must have the same factor prices. This is, arguably, an empirically less relevant proposition
than the Stolper–Samuelson theorem, or than Theorem 1. When n > 2, the relative factor-
intensity condition is not sufficient for the existence of a global inverse. Gale and Nikaido [6]
proved that, if v is C1, and the Jacobian of v is everywhere a P -matrix—all the principal mi-
nors of v are positive—then v is globally invertible. But even if the Jacobian is everywhere a
P -matrix, the Stolper–Samuelson theorem need not hold (Chipman [2]). Theorem 1 shows that
our generalization of the factor-intensity condition suffices to give the Stolper–Samuelson result
with n > 2. We do not need to address the problem of the existence of a global inverse.

3. English auction

We study the irrevocable exit English auction introduced by Milgrom and Weber [12]. In
this game the auctioneer continuously raises the asking price, starting from zero. A bidder has
the option of quitting the auction publicly at any time. Once a bidder quits, the bidder cannot
reenter. The last bidder to remain active is the winner and pays the price called at the time that
the previous to the last bidder leaves the auction.

We prove that the English auction has an efficient ex post equilibrium in models where bidders
may have interdependent valuations and need not be ex ante identical.

3.1. A sufficient condition

Let N = {1,2, . . . , n} be the set of players. Each player i observes a signal si ∈ [0, b]. This
signal is only known to player i. Signals are drawn according to some probability measure μ

over [0, b]n that need not posses a density. The signals affect the values that players have for the
objects. Player i’s valuation is a continuous function vi : [0, b]n → R that maps profiles of signals
(one for each player) into real numbers, with vi(0) = 0 for all i, and that is strictly increasing in
its own signal, so that for all i and all s−i in [0, b]n−1, s′

i > si implies vi(s
′
i , s−i ) > vi(si , s−i ).

For any s, let

W(s) = {
i ∈ N : vi(s) � vk(s) ∀k ∈ N

}
.

5 The comparison with Jones and Scheinkman’s [8] “every factor has some natural enemy” result is similar. Jones
and Mitra’s [7] version of Stolper–Samuelson involves a dominant diagonal condition, which shares the spirit of the
dominant-effect property. But they also require additional strong assumptions: that the profile of factor shares take an
identical (up to a permutation) geometric decay form for all sectors.
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We refer to W(s) as the set of “winners” at s and denote by |W(s)| the cardinality of W(s).
We now define two properties that are jointly sufficient for the existence of an efficient equi-

librium.

Definition 2. The functions v1, . . . , vn are increasing at ties if for every s such that |W(s)| > 1
and all i ∈ W(s)

s′ � s,
s′
j > sj implies j ∈ W(s)

}
⇒ vi

(
s′
i , s′−i

)
� vi

(
s′
i , s−i

)
.

The interpretation of the above property is as follows. Suppose s is a profile of signals for
which at least two players have equal and highest valuations. Then, the property requires that if
one of the winner’s signal increases to s′

i , then the effect of the other player’s signals, when they
increase from s−i to s′−i , does not hurt player i. Example 5.6 of Maskin [11] (taken from Esö
and Maskin [4]) shows that even if some sort of single crossing property is satisfied, one still
needs that player j ’s signal does not affect player i’s valuation “very” negatively, if an efficient
equilibrium is to exist (an equilibrium is efficient if it always allocates the object to one of the
players with the highest valuation). Valuations in Maskin’s example are not increasing at ties, and
that is why he finds that no efficient equilibrium exists. Stronger versions of this property have
been standard in the literature. The most common assumption of this kind is that vi is increasing
in si and weakly increasing in s−i . The only paper in this literature that has an assumption that
is not stronger than increasing at ties is in Krishna [9]. The assumption in that paper is neither
weaker nor stronger than increasing at ties: it states that when i’s signal increases, the sum of all
player’s valuations increases.

Definition 3. The functions v1, . . . , vn satisfy the own effect property (OEP) if for every s such
that |W(s)| > 1,

s′ � s
s′
j > sj implies j ∈ W(s)

}
⇒ max

j : s′
j >sj

vj (s′) � max
k: s′

k=sk

vk(s′).

It states that the effect of an increase in some signals is larger for one of the players whose
signal increased than for all the rest of the players. Notice that it is a form of single crossing: if
there are only two players, j ’s valuation is equal to k’s and j ’s signal increases, j ’s valuation is
larger than k’s. As will be shown later, it is the weakest form of “single crossing” that has been
used in this branch of the literature.

In the auction we study, a strategy for a player is a function that determines a price at which
to quit, for each realization of the private information, and each history of who left the auction
at what price. Formally, a strategy for bidder i is a collection of functions, one for each set of
(active) players A and each profile pN\A of prices at which bidders in N\A quit the auction,
βA

i : [0, b] × RN\A
+ → R+ where i ∈ A, |A| > 1 and βA

i (si ,pN\A) > max{pj : j ∈ N\A}. The

value βA
i (si ,pN\A) is the price at which bidder i will drop out if players in N\A dropped at

prices pN\A and nobody quits before. As long as p < βA
i (si ,pN\A) he stays in the auction; he

drops out when p = βA
i (si ,pN\A); in any history in which p > βA

i (si ,pN\A) he drops out (this
part of the strategy will never be used). A profile of strategies is an ex-post equilibrium if it
remains an equilibrium even if all players know everybody else’s signals.
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Theorem 3. If v1, . . . , vn are increasing at ties and satisfy the own effect property, then the
English auction has an efficient ex post equilibrium.

3.2. Necessity

Theorem 3 shows that the own-effect property is sufficient for the existence of equilibrium.
We now prove that, under a regularity condition on valuations, there is a sense in which the
own-effect property is also necessary for the existence of efficient equilibria in undominated
strategies.

So far we have said that an equilibrium is efficient if it allocates the object to one of the players
with the highest valuation for all profiles of signals. This definition of efficiency is the most
demanding if one is concerned with finding sufficient conditions for the existence of an efficient
equilibrium. But one could also use another definition of efficiency which is more demanding
for necessity, and less so for sufficiency. Let us say that if an equilibrium of the English auction
(with valuations v and distribution of signals μ) assigns the object to the highest bidder with
μ-probability 1 it is μ-efficient.

Suppose now that we want to prove a theorem like “If property P of the profile of valuations v

is violated, then there is no μ-efficient equilibrium for any μ.” There is no hope for such a theo-
rem, because if we assume vi(0) = 0 for all i and set μ(0) = 1, then any strategy profile that has
βN

i (0,∅) = 0 (all players quit at p = 0, when all players are active, if they have a signal of 0) is a
μ-efficient equilibrium. Hence, we will show a theorem of the form “If property P of the profile
of valuations v is violated, then there is a μ such that no μ-efficient equilibrium exists.”

Definition 4. The functions v1, . . . , vn are regular if each vi is twice continuously differentiable
and for all s with |W(s)| > 1 the Jacobian matrix of partial derivatives of subsets of the winners
is invertible, or more formally, for all P ⊂ W(s),

DP v(s) =
(

∂vi(s)
∂sj

)
i,j∈P

(6)

is invertible.

We now show that in the presence of the regularity assumption above, the own effect property
is necessary.6 We also assume that if two or more players quit at the same price, the tie is broken
assigning the object to each player with positive probability.7

Theorem 4 (Necessity of the own effect property). Let the functions v1, . . . , vn be regular and
increasing at ties. If v1, . . . , vn do not satisfy the own effect property for some interior points s
and s′ with s′ > s, then there is a μ such that no μ-efficient equilibrium in undominated strategies
exists.

6 One can obtain a simple proof of the result using Theorem 7 below, which shows that the single crossing property
in Birulin and Izmalkov [1] is stronger than the own effect property, and their necessity result. In that case, one has to
assume that gradients are positive.

7 Papers that deal with necessity have usually assumed this either explicitly or implicitly.
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3.3. Related literature

In this section we show that the two properties used by Krishna [9] (Average and Cyclical
Crossing Conditions) imply the own-effect property. We also show that under the structure used
by Birulin and Izmalkov [1] their “generalized single crossing property” is equivalent to the OEP.

For any P ⊂ N , let IP denote the vector in Rn with 1 in the j th coordinate iff j ∈ P and 0
otherwise and let ∇vk denote the gradient of vk .

Definition 5. Say that v satisfies

(a) Krishna’s Average Crossing Condition (ACC) if for any s with |W(s)| > 1 and i �= j

n∑
k=1

∂vk

∂sj
> n

∂vi

∂sj
.

(b) Krishna’s Cyclical Crossing Condition (CCC) if for all j

∂vj

∂sj
>

∂vj+1

∂sj
� ∂vj+2

∂sj
� · · · � ∂vj−1

∂sj

holds at every s with |W(s)| > 1, where j + k ≡ (j + k) modulo n.

Theorem 5. If v satisfies the Average Crossing, or the Cyclical Crossing, condition, then it sat-
isfies the OEP.

As an illustration of the importance of the OEP assumption for auctions, we now show that
when there are two players, it is weaker than the Single Crossing Condition: Suppose there are
two players; the functions v = (v1, v2) satisfy the Single Crossing Condition if at any s such that
v1(s) = v2(s)

∂vi(s)
∂sj

<
∂vj (s)
∂sj

.

This is the version in Dasgupta and Maskin [3]. In Maskin [10] the inequality is weak, but
applies to all s. Since single crossing is necessary for the existence of efficient equilibria in two-
player auctions, the OEP is also necessary.

Corollary 6. With 2 players, OEP is weaker than Single Crossing. Suppose that there are only
two players, and that v1 and v2 are differentiable. If v satisfies the SC condition or the (Maskin)
Single Crossing, it satisfies the OEP.

Corollary 6 is a consequence of Theorem 5, as both of Krishna’s conditions are equivalent to
Single Crossing with two players. We present a direct proof of Corollary 6 because it is simple
and instructive.

Proof of Corollary 6. Take any s′′ with |W(s′′)| > 1 (i.e. v1(s′′) = v2(s′′)) and an s′ � s′′ such
that s′

1 > s′′
1 , s′

2 = s′′
2 . We will now show that v1(s

′
1, s

′′
2 ) � v2(s

′
1, s

′′
2 ). Let

ε∗ = max
{
ε ∈ [0,1]: v1

(
εs′ + (1 − ε)s′′) � v2

(
εs′ + (1 − ε)s′′)}
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and notice that ε∗ is well defined, since 0 belongs to the set over which the maximum is taken. If
ε∗ = 1, there is nothing to prove, so suppose that the OEP is violated, so that ε∗ < 1. Define s =
ε∗s′ + (1 − ε∗)s′′. We then have: v1(s) = v2(s) and for all s1 such that s′

1 > s1 > s1, v1(s1, s2) <

v2(s1, s2) obtains. This implies that for all s1 > s1

v1(s1, s2) − v1(s) < v2(s1, s2) − v2(s) ⇒ ∂v1(s)
∂s1

� ∂v2(s)
∂s1

which contradicts the SC condition, and therefore proves that if SC holds, so does the OEP.
We will now show that if the Maskin Single Crossing holds, so does the OEP. As before,

assume ε∗ < 1, so that

v1
(
s′

1, s
′′
2

)
< v2

(
s′

1, s
′′
2

)
(7)

and define s = ε∗s′ + (1 − ε∗)s′′ which implies v1(s) = v2(s). This last equality and Eq. (7)
contradict Maskin’s Single Crossing since ∀s1 ∈ [s′

1, s1]

∂v1(s1, s
′′
2 )

∂s1
�

∂v2(s1, s
′′
2 )

∂s1
⇒

s′
1∫

s1

∂v1(s1, s
′′
2 )

∂s1
ds1 �

s′
1∫

s1

∂v2(s1, s
′′
2 )

∂s1
ds1

⇒ v1
(
s′

1, s
′′
2

) − v1
(
s1, s

′′
2

)
� v2

(
s′

1, s
′′
2

) − v2
(
s1, s

′′
2

) ⇔ v1
(
s′

1, s
′′
2

)
� v2

(
s′

1, s
′′
2

)
as was to be shown. �

We now turn to Birulin and Izmalkov [1]. We show that our Theorem 3 implies their main
result. The main assumptions in Birulin and Izmalkov are: regularity (introduced in Eq. (6)), that
∇vj (s) � 0 for all j and s (which implies increasing at ties), and the following property:

Definition 6. The set of functions v satisfy the Generalized Single Crossing property if for any s
with |W(s)| > 1 and any A ⊂ W(s),

max
j∈A

u∇vj (s) � u∇vk(s)

for all k ∈ W(s) \ A and any u such that ui > 0 for i ∈ A and uj = 0 otherwise.

The next result shows that if one assumes all the conditions of Birulin and Izmalkov, then the
GSC and the OEP are equivalent.

Theorem 7. Suppose that s is drawn from a density, v’s are twice differentiable, regular, and
∇vj (s) � 0 for all j and s. Then, v satisfies the OEP if and only if it satisfies the GSC.

Proof. If v satisfies the GSC, it satisfies the OEP. Pick any s such that |W(s)| > 1 and suppose
that s′ � s and s′

j > sj only for some j ∈ W(s). We will now show that maxj : s′
j >sj

vj (s′) �
maxk: s′

k=sk
vk(s′). To obtain a contradiction, suppose that for some player i with s′

i = si we
have vi(s′) = maxk: s′

k=sk
vk(s′) > maxj : s′

j >sj
vj (s′). In the equilibrium proposed by Birulin and

Izmalkov, all players with s′
i = si are inactive at p = vj (s) for j such that s′

j > sj (either they
had quit before p or quit at p) and so cannot win the auction when types are s′. Since the players
with maximum valuations at s′ are inactive, the equilibrium cannot be efficient, which would
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contradict Proposition 1 in Birulin and Izmalkov (which asserts that, under their assumptions,
the proposed equilibrium is efficient). This proves that the OEP is weaker than GSC.

If v satisfies the OEP, it satisfies the GSC. Suppose that v does not satisfy the GSC so that
for some s with |W(s)| > 1 and some A ⊂ W(s),

max
j∈A

u∇vj (s) < u∇vk(s)

for some k ∈ W(s)\A and some u such that ui > 0 for i ∈ A and uj = 0 otherwise. Then, it must
be the case that for ε sufficiently small we have vk(s + εu) > maxj∈A vj (s + εu) contradicting
the OEP (with s′ = s + εu). �

The following example shows that GSC is not sufficient in the absence of regularity.

Example 1. Suppose two players, 1 and 2, whose signals s1 and s2 are drawn independently from
a density on [0,1]. Let

z1(s1) = (2s1 − 1)5 and z2(s1) =
{

(2s1 − 1)3 s1 � 1
2 ,

2(2s1 − 1)3 s1 � 1
2 .

It is easy to check that if valuations are vi(s) = s1 + s2 + zi(s1) + 1, then all of Birulin and
Izmalkov’s assumptions are satisfied, except for regularity. Also, there is no efficient equilib-
rium, since we would need that for all s1 < 1

2 , β1(s1) > β2(s2) for all s2 and for all s1 > 1
2 ,

β1(s1) < β2(s2) for all s2. But then, when player 1 has a signal of 1, he is strictly better off
bidding as if he had a signal of 1/4, showing that there is no efficient equilibrium.

4. Final remarks

We have used similar “relative sensitivity” assumptions on a system of equations to obtain
results in two seemingly different applications. Intuitively we require that a variable be associated
to each function so that the own effect is stronger than the cross effect. There are alternative
formalizations of this intuition. We used three different ones in the paper, the dominant-effect,
the adapted dominant-effect, and the own effect property. The adapted dominant-effect is simply
a version of the dominant-effect adapted to non-scalar variables, for the non-square Stolper–
Samuelson theorem.

The own effect property is weaker than the dominant-effect property. In trying to establish
the efficiency of the English auction we looked for the weakest condition that would yield the
result. Indeed, we also show that the own-effect property is necessary if one is willing to assume
a regularity condition.

Both properties, however, have much in common. Suppose there are three functions with three
variables and that each variable si has a stronger influence on vi than the other variables do. Both
properties rule out the possibility that if s1 and s2 increase, the change in v3 might dominate the
changes in v1 and v2.

Appendix A. Proof of results on English auctions

The proof of Theorem 1 is based on the construction of an equilibrium with certain proper-
ties. This kind of equilibrium was previously used in Milgrom and Weber [12], Maskin [10],
Krishna [9] and Birulin and Izmalkov [1]. It is based on the following simple idea. Since exits in
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English auctions are public, one player’s quitting conveys information to the other players about
the quitter’s signal. Suppose there is an increasing function σ(p) mapping prices into profiles
of signals such that vi(σ (p)) = vj (σ (p)) = p for all i and j . Suppose that no player has quit,
and the price is p. Then, in the proposed equilibrium player i stays in the auction as long as
si > σi(p) and quits when si = σi(p). Therefore, when a player quits, his signal si = σi(p) be-
comes known. This is a reasonable strategy since, as long as nobody quits, players know that
s � σ(p) and therefore vi(s) � p for all i. In any sub-auction in which the set of active players
is B , let us call yN\B the vector of known signals of the players who have already quit. The
informal description of the strategies that will be used in the efficient ex-post equilibrium are the
following:

• in the empty history, player i remains in the auction as long as b � si > σi(p) (the profile
of signals 0 satisfies (a) and (b) of Lemma A.1 below, so the function σ exists); all players
know this; player i drops at the lowest price p such that si = σi(p); let the price of the first
drop be p1, let i∗ be the player who drops at p1 and at the time of his drop, player i∗’s signal
becomes known, so let yi∗ = σi∗(p1);

• let A = N\{i∗} and yN\A ≡ yi∗ and notice that since σ(p1) satisfies vj (σ (p1)) = p for all j ,

the profile yA = σ−i∗(p1) satisfies the conditions of Lemma A.1, so that a function σ yN\A

satisfying (i)–(iii) in that lemma exists. Then, player j ∈ A remains in the auction as long as

sj � σ yN\A
(p), and drops at the lowest p such that sj = σ yN\A

(p);
• the process continues in this fashion.

The formal description of the strategies just mentioned is as follows: in a subgame in

which types yN\A are known and active players are A, βA
i (si ,yN\A) = β

yN\A
i (si) = min{p:

σ yN\A
(p) � si}. Notice that since σ is continuous and weakly increasing, β is strictly increasing

and well defined.
The following lemma proves the existence of a σ function as described above for any (rele-

vant) sub-auction. For any set A ⊆ N , any player i ∈ A, and any y, let V
yN\A
i : [0, b]|A| → R be

defined by V
yN\A
i (s) = vi(s,yN\A).

Lemma A.1. Fix any B ⊆ N , with |B| > 1, and fix a profile of types yN\B such that there
exists yB �= b for which for all i ∈ B , yi < b implies vi(y) = maxj∈N vj (y). If v is increasing
at ties and satisfies the OEP, there exists a pB

y > maxi vi(y) and a weakly increasing function

σ yN\B
: [maxi vi(y),pB

y ] → ∏
i∈B [yi, b] mapping prices into types of active players, such that:

(i) σ
yN\B
j (pB

y ) = b for some j with yj < b and for all i ∈ B , p = pB
y and yi < b imply the

break even condition

V
yN\B
i

(
σ yN\B

(p)
) = p (A.1)

holds;

(ii) for all p < pB
y , if yi < b then σ

yN\B
i (p) < b and the break even condition (A.1) hold;

(iii) for all p � pB
y , and all k ∈ N , vk(σ

yN\B
(p),yN\B) � p.

The proof of Lemma A.1 is based on the following lemma.
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Lemma A.2. Fix any A ⊆ N , with |A| > 1, and fix a profile of types yN\A such that there exists
a yA for which:

(a) for all i, j ∈ A, vi(y) = vj (y) and yi, yj < b;
(b) for all k /∈ A, and i ∈ A, vk(y) � vi(y).

If v is increasing at ties and satisfies the OEP, there exists a pA
y > vi(y) = V

yN\A
i (yA) (for

i ∈ A) and a weakly increasing function σ yN\A
: [V yN\A

i (yA),pA
y ] → ∏

i∈A[yi, b] mapping prices
into types of active players, such that:

(i) σ
yN\A
j (pA

y ) = b for some j , and for all i ∈ A, p = pA
y implies that the condition (A.1) holds;

(ii) for all p < pA
y , σ yN\A

(p) � b = (b, . . . , b) and the break even condition (A.1) holds for all
i ∈ A;

(iii) for all p � pA
y , and all k ∈ N , vk(σ

yN\A
(p),yN\A) � p.

Proof. Fix any A and y that satisfy conditions (a) and (b). Let (b,yA−i ) denote the vector yA with

the ith component replaced by a b. Since V
yN\A
i is strictly increasing in si and yi < b (by (a)) we

get for all i, V
yN\A
i (yA) < V

yN\A
i (b,yA−i ).

Defining a non-empty set X. For any i ∈ A, let π = [V yN\A
i (yA),mini V

yN\A
i (b,yA−i )]. Let

Y =
{
(P,σ ): V

yN\A
i

(
yA

) = vi(y) ∈ P ⊂ π, σ :P →
∏
A

[
yA
i , b

]}
and

X = {
(P,σ ) ∈ Y : σ weakly increasing, σ

(
vi(y)

) = yA, V
yN\A
i

(
σ(p)

) = p,

∀(i,p) ∈ A × P
}
.

Notice that by condition (a) P = {p: p = vi(y) for some i ∈ A} is a singleton and the function σ

defined by σ(vi(y)) = yA satisfies V
yN\A
i (σ (p)) = p. Therefore, X is non-empty.

Defining a partial order on X. Define a partial order on X by (P ′, σ ′) � (P,σ ) if and only if
P ′ ⊇ P and σ ′(p) = σ(p) for all p ∈ P .

Showing that every chain in X has an upper bound. Take any totally ordered set (a chain)
{(Pα,σα)}α in X and define P ≡ ⋃

α Pα and σ :P → ∏
A[yA

i , b] through σ(p) = σα(p) for
any α such that p ∈ Pα . Notice that the definition of σ does not depend on the specific α chosen,
since if p belongs to two different Pα and Pα′ , we still get σα(p) = σα′(p). I will first show that
(P,σ ) ∈ X, and then that (P,σ ) is an upper bound for {(Pα,σα)}α .

It is easy to check that σ is weakly increasing. Also, for any p ∈ P , there is some α for which:
p ∈ Pα and σα(p) = σ(p). Then, since (Pα,σα) ∈ X, we get

V
yN\A
i

(
σα(p)

) = p ⇒ V
yN\A
i

(
σ(p)

) = p

showing that (P,σ ) ∈ X.
To see that (P,σ ) is an upper bound, note that for any α we have P ⊇ Pα and σ(p) = σα(p)

for all p ∈ Pα .
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Showing that the maximal element implied by Zorn’s lemma must have P = π . Zorn’s
lemma then ensures that there exists a maximal element (P M,σM) in X. We now show that
P M = π . Suppose p′ /∈ P M , notice that we have vi(y) ∈ P M and vi(y) is a lower bound for P M ,
so {p̃ ∈ P M : p̃ < p′} is non-empty, so define p∗ = supp̃{p̃ ∈ P M : p̃ < p′}. If there is some
p ∈ P M such that p > p′ let

p∗ = inf
p̃

{
p̃ ∈ P M : p̃ > p′}.

Case A, p∗∗∗ /∈ P M . Consider first the case in which p∗ /∈ P M . We set P ′ = P M ∪{p∗} and letting
{pn} be an increasing sequence in P M that converges to p∗, define σ ′ on P ′ through

σ ′(p) =
{

σ ′(p) = σM(p) for all p �= p∗,
σ ′(p∗) = limn σM(pn).

Since σM is increasing, the limit is well defined. Moreover, it is easy to check that σ ′ is in-

creasing. For all p ∈ P M , we already know that V
yN\A
i (σ ′(p)) = V

yN\A
i (σM(p)) = p holds, and

for p∗, we also have that, by continuity of V
yN\A
i ,

V
yN\A
i

(
σ ′(p∗)

) = V
yN\A
i

(
lim
n

σM(pn)
)

= lim
n

V
yN\A
i

(
σM(pn)

) = lim
n

pn = p∗

establishing that (P ′, σ ′) ∈ X. Since (P ′, σ ′) 	 (P M,σM) by construction, this contradicts
(P M,σM) being maximal.

Case B, p∗∗∗ ∈ P M and ∃p ∈ P M such that p > p′. Consider now the case in which p∗ ∈ P M ,
so that p∗ < p′. If there is some p ∈ P M such that p > p′, one can follow the same steps as in
Case A to discard the case in which p∗ /∈ P M , so assume that p∗ ∈ P M . Let s = σM(p∗), and
s = σM(p∗) and fix any p with

p∗ < p < minV
yN\A
i

(
si, σ

M−i (p∗)
)
� p∗. (A.2)

Assume, without loss of generality, that si > si for all i (when they are equal, the signal of
player i just becomes a fixed “parameter” in the V functions, and thus plays no role).

Let g : R → (−1,1) be any strictly decreasing function with g(0) = 0. For i ∈ A, let

hi(s) =

⎧⎪⎪⎨⎪⎪⎩
si + g(V

yN\A
i (s) − p)(si − si) if V

yN\A
i (s) > p,

si if V
yN\A
i (s) = p,

si + g(V
yN\A
i (s) − p)(si − si) if V

yN\A
i (s) < p.

The function

h :
∏
A

[si, si] →
∏
A

[si , si]

satisfies hypothesis of Brouwer, so there is a fixed point sf . We now show that ∀i,

V
yN\A
i

(
sf

) = p. (A.3)

(1) Suppose that for some i, V
yN\A
i (sf ) > p. Then we get V

yN\A
i (sf ) − p > 0, and since

hi(sf ) = s
f
i , we must have s

f
i = si (otherwise, g(V

yN\A
i (sf ) − p) would be subtracting some-

thing from s
f
i ). We then get V

yN\A
i (si, sf

−i ) > p and since Eq. (A.2) ensures

V
yN\A

(s) = V
yN\A(

σ(p∗)
) = p∗,
i i
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we must have s
f
j > sj for some j . Let k be the player with s

f
k > sk for whom V

yN\A
k (sf ) =

max
i: s

f
i >si

V
yN\A
i (sf ). By applying the OEP we see that for player i with V

yN\A
i (sf ) > p and

s
f
i = si ,

V
yN\A
k

(
sf

)
� max

j : s
f
j =sj

V
yN\A
j

(
sf

)
� V

yN\A
i

(
sf

)
> p.

Then, player k is such that V
yN\A
k (sf ) > p, but since

hk

(
sf

) = s
f
k = s

f
k + g

(
V

yN\A
k

(
sf

) − p
)(

s
f
k − sk

)
with g(V

yN\A
k (sf ) − p) < 0 which contradicts sf being a fixed point.

(2) If V
yN\A
m (sf ) < p, for some m, then, since hm(sf ) = s

f
m, we must have s

f
m = sm, because

otherwise g(V
yN\A
m (sf ) − p) would be adding something strictly positive to s

f
m. Because we can

use that v is increasing at ties with s′ = (sm, sf
−m,yN\A) and s = (σ (p∗),yN\A), we obtain

p > V
yN\A
m

(
sf

) = V
yN\A
m

(
sm, sf

−m

)
� V

yN\A
m (sm, s−m) = V

yN\A
m

(
sm,σ−m(p∗)

)
� minV

yN\A
i

(
si, σ−i (p∗)

)
> p

which is a contradiction. That is, we had chosen a small p, so that a large increase in the signal

of m from sm to sm increases V
yN\A
m above p.

Items (1) and (2) have established that V
yN\A
i (sf ) = p for all i, so that P ′ = P M ∪ {p} and

σ ′(p̃) =
{

σ ′(p̃) = σM(p̃) for all p̃ �= p,

σ ′(p) = sf

satisfy (P ′, σ ′) 	 (P M,σM) which contradicts (P M,σM) being maximal. We conclude that

P M = π , and that σM maps π = [V yN\A
i (yA),mini V

yN\A
i (b,yA−i )] into

∏
A[yA

i , b], is increasing

and V
yN\A
i (σM(p)) = p, ∀i ∈ A, ∀p ∈ π .

Case C, p∗∗∗ ∈ P M and ���p ∈ P M such that p > p′. Recall s = σ(p∗) and fix any p with

p∗ = V
yN\A
i (s) < p � minVi

(
b,yA−i

)
. (A.4)

Let g : R → (−1,1) be any strictly decreasing function with g(0) = 0. For i ∈ A, let

hi(s) =

⎧⎪⎪⎨⎪⎪⎩
si + g(V

yN\A
i (s) − p)(si − si) if V

yN\A
i (s) > p,

si if V
yN\A
i (s) = p,

si + g(V
yN\A
i (s) − p)(b − si) if V

yN\A
i (s) < p.

The function h has a fixed point sf , so we will show that for all i, V
yN\A
i (sf ) = p.

(1) Suppose that for some i, V
yN\A
i (sf ) > p, so that s

f
i = si . We then get V

yN\A
i (si, sf

−i ) > p

and since V
yN\A

(s) < p, we must have s
f

> sj for some j . Let k be the player with s
f

> sk for
i j k
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whom V
yN\A
k (sf ) = max

i: s
f
i >si

V
yN\A
i (sf ). By applying the OEP we see that for player i with

V
yN\A
i (sf ) > p and s

f
i = si ,

V
yN\A
k

(
sf

)
� max

j : s
f
j =sj

V
yN\A
j

(
sf

)
� V

yN\A
i

(
sf

)
> p.

Then, player k is such that V
yN\A
k (sf ) > p, but since s

f
k > sk ,

hk

(
sf

) = s
f
k = s

f
k + g

(
V

yN\A
k

(
sf

) − p
)(

s
f
k − sk

)
with g(V

yN\A
k (sf ) − p) < 0 which contradicts sf being a fixed point.

(2) If V
yN\A
i (sf ) < p, for some i, then, since hi(sf ) = s

f
i , we must have s

f
i = b. Then, using

the choice of p in Eq. (A.4) and that v is increasing at ties, with s′ = (b, sf
−i ,yN\A) and s = y,

we obtain

p > V
yN\A
i

(
sf

) = V
yN\A
i

(
b, sf

−i

)
� V

yN\A
i

(
b,yA−i

)
� minV

yN\A
i

(
b,yA−i

)
� p

which is a contradiction.
Items (1) and (2) have established for all i, so that P ′ = P M ∪ {p} and

σ ′(p̃) =
{

σ ′(p̃) = σM(p̃) for all p̃ �= p,

σ ′(p) = sf

satisfy (P ′, σ ′) 	 (P M,σM) which contradicts (P M,σM) being maximal. We conclude that

P M = π , and that σM maps π = [V yN\A
i (yA),mini V

yN\A
i (b,yA−i )] into

∏
A[yA

i , b], is increasing

and V
yN\A
i (σM(p)) = p, ∀i ∈ A, ∀p ∈ π .

So far we have established that for all p in [V yN\A
i (yA),mini V

yN\A
i (b,yA−i )] there exists of a

profile of signals σ yN\A
(p) ≡ sf such that V

yN\A
i (σ yN\A

(p)) = V
yN\A
i (sf ) = p for all i, for all

p � minVi(b,yA−i ), and σ yN\A
is increasing. Since y and A are fixed throughout the proof, we

will let σ(p) stand for σ yN\A
(p) and Vi for V

yN\A
i .

Let p1 = minVi(b,yA−i ) and fix s1 = σ(p1). If s1
i = b for some i, the proof is complete by

letting pA
y = p1 since for all p < p1 we have that σ(p) � b, for if σi(p) was equal to b, we

would get the following contradiction

p = Vi

(
σ(p)

)
� minVi

(
σ(p)

)
� minVi

(
b,yA−i

) = p1 > p.

So assume s1
i < b for all i. Then, we have that

p1 = minVi

(
b,yA−i

) = Vi

(
σ
(
p1)) = Vi

(
s1)

and s1
i < b imply that p1 < minVi(b, s1−i ) ≡ p2. Fix any p1 < p � p2. We can now repeat

exactly the same steps as we have done so far (with s1 in place of yA) and show that in the

domain [V yN\A
i (yA),mini Vi(b, s1−i )] one has an increasing function σ(·) such that Vi(σ (p)) = p

for all i. Fix any s2 = σ(p2), and notice again that if σi(p
2) = b for some i, the proof is complete

by letting pA
y = p2.

Continuing in this fashion, we get an increasing sequence of st and pt with the properties that
for all i,

Vi

(
st

) = pt < pt+1 = minVi

(
b, st

−i

)
.

i
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In the limit p∞, s∞ we obtain for all i

Vi

(
s∞) = p∞ = min

i
Vi

(
b, s∞−i

)
and so, for some i, Vi(s∞) = p∞ = Vi(b, s∞−i ). Since Vi is increasing in si this means that
s∞
i = b, so that we can set pA

y = p∞. This completes the proof of (i) and (ii).

To establish (iii) set s′ = (σ yN\A
(p),yN\A) and s = y. If s′ = s conditions (a) and (b) yield

the desired result, so assume s′ �= s. Note that: k ∈ A implies p = vk(σ
yN\A

(p),yN\A); k /∈ A

implies that s′
k = sk so that the OEP ensures

p = max
k: s′

k>sk

vk

(
σ yN\A

(p),yN\A)
� max

k: s′
k=sk

vk

(
σ yN\A

(p),yN\A)
� vk

(
σ yN\A

(p),yN\A)
for all k /∈ A as was to be shown. �

The previous lemma establishes the existence of a σ function that maps prices into signals, the
resulting profile of signals being the “presumption” that other players will have about a players’
signal, if he quits at a certain price. The set A is the set of “active” players at a certain moment,
and the profile of signals y is decomposed in the set of signals of inactive players yN\A and the
set of signals such that all active players have signals greater than yA. Lemma A.1 describes the
presumption of other players about a certain player’s signal, when he should have quit, but he
did not (in the sense that his presumed signal is b, but he did not quit). The difference with the
previous lemma is that we allow some elements of yB to be equal to b (whereas in Lemma A.2
we had yB

i < b for all i in B).

Proof of Lemma A.1. Let B and y be as in the statement of this lemma. Consider first the case in
which yk < b for k = i, j ∈ B , i �= j . Defining A = B\{j ∈ B: yj = b} and applying Lemma A.2
yields the desired result. So assume there is a unique i ∈ B such that yi < b. Let pB

y = vi(b,y−i )

and let v−1
i (p;y−i ) be the “inverse” of vi , defined by

vi

(
v−1
i (p;y−i ),y−i

) ≡ p.

Then, it is easy to check that σ yN\B
defined by

σ
yN\B
j (p) =

{
b, j ∈ B\{i},
v−1
i (p;y−i ), j = i

satisfies conditions (i) and (ii). To check condition (iii), two cases must be considered.
(I) If |W(y)| > 1, we have that for s = y, and

s′ = (
σ

yN\B
i (p),y−i

) = (
σ

yN\B
i (p), b, . . . , b,yN\B) = (

σ yN\B
(p),yN\B)

the OEP implies that since i is the only player for which s′
i > si , for all p,

p = vi(s′) = max
j : s′

j >sj

vj (s′) � max
j �=i

vj (s′) = max
j �=i

vj

(
σ yN\B

(p),yN\B)
as was to be shown.

(II) If |W(y)| = 1, we have that for p∗ = maxj vj (y) = vi(y),

vi

(
σ yN\B

(p∗),yN\B) = maxvj (y) > maxvj (y) = maxvj

(
σ yN\B

(p∗),yN\B)
. (A.5)
j∈N j �=i j �=i
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Suppose that contrary to what we want to show, there was some p such that for some j �= i

vj

(
σ yN\B

(p),yN\B)
> p = vi

(
σ yN\B

(p),yN\B)
. (A.6)

Given Eqs. (A.5) and (A.6), continuity of σ yN\B
(p) (ensured by construction) and Bolzano’s The-

orem, there exists a p∗ such that maxj �=i vj (σ
yN\B

(p∗),yN\B) = vi(σ
yN\B

(p∗),yN\B). Then,

letting s′ = (σ
yN\B
i (p),y−i ) and s = (σ

yN\B
i (p∗),y−i ) the OEP implies

vi(s′) � max
k �=i

vk(s′) � vj (s′) ⇔ vi

(
σ

yN\B
i (p),y−i

)
� vj

(
σ yN\B

(p),yN\B)
which contradicts (A.6), and therefore completes the proof. �

The next lemma gives the connection between one set of functions σB and the set of func-
tions σA when A = B\{l} for some l ∈ B . This gives the relation between the bidding strategies
in a sub-auction with active players B , and the one that follows after player l has dropped out. If
various players drop out at the same price, one only needs to apply the lemma repeatedly at the
price of the drops (p̃ in the lemma).

Lemma A.3. Fix any B ⊆ N , with |B| > 2, and fix a set of types yN\B such that there exists a
yB �= b for which for all i ∈ B , yi < b implies vi(y) = maxj∈N vj (y). Assume that v is increas-

ing at ties and satisfies the OEP, and fix a pB
y and σ yN\B

as in the statement of Lemma A.1.

Fix any l ∈ B and let A = B\{l}. For any p̃ � pB
y , if sB = σ yN\B

(p̃) then for z ≡ (yN\B, sl)

there exists pA
z � vi(sB,yN\B) = V z

i (sA) ( for i with yi < b) and a weakly increasing function
σz : [V z

i (sA),pA
z ] → ∏

i∈A[si , b] mapping prices into types of active players, such that:

(i) σz
j (pA

z ) = b for some j with yj < b and for all i ∈ A, p = pA
y and yi < b imply the break

even condition

V z
i

(
σz(p)

) = p; (A.7)

(ii) for all p < pA
z , if yi < b then σz

i (p) < b and the break even condition (A.7) holds for all
i ∈ A;

(iii) for all p � pA
y , and all k ∈ N , vk(σ

yN\A
(p),yN\A) � p;

(iv) for all j ∈ A

σz
j (p̃) = σ

yN\B
j (p̃).

Proof. Items (i), (ii) and (iii) follow as a direct application of Lemma A.1. Then, item (iv) follows
because for all i, σz

i (p̃) � sA
i , and if σz

j (p̃) > sA
j we would get (using s′ = (sA

j , σ z
−j (p), z) and

s = (sA, z) and that v is increasing at ties)

p̃ = V z
j

(
σz(p̃)

)
> V z

j

(
sA
j , σ z

−j (p)
)
� V z

j

(
sA

)
= vj

(
sB,yN\B) = V

yN\B
j

(
sB

) = V
yN\B
j

(
σ yN\B

(p̃)
) = p̃

which is a contradiction. �
We now show that the σ function is continuous.
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Lemma A.4. For every A and yN\A satisfying the conditions of Lemma A.1, the function σ yN\A

is continuous.

Proof. Suppose that σ is discontinuous at p∗. It must be either not continuous from the right, or
from the left, so assume without loss of generality that it is discontinuous from the left: there is
an ε such that for all δ there is some p with p∗ − p < δ but σ(p∗) − σ(p) � ε (we have used σ

non-decreasing). Fix then δ1 = 1 and p1 < p∗ such that p∗ − p1 < δ1 but σ(p∗) − σ(p1) � ε.
Pick then, by induction, δn = (p∗ − pn−1)/2 and p∗ − pn < δn but σ(p∗) − σ(pn) � ε. We
then obtain: pn → p∗, pn is increasing, σ(pn) is increasing and therefore has a limit (since its
bounded above by b) s∞ and s∞ �= σ(p∗), s∞ � σ(p∗).

Since for all n and for all i, Vi(σ (pn)) = pn we obtain by continuity of Vi ,

p∗ = limpn = limVi

(
σ(pn)

) = Vi

(
limσ(pn)

) = Vi

(
s∞)

.

But then, s∞ �= σ(p∗) and s∞ � σ(p∗) imply that for some i, s∞
i < σi(p

∗). This, in turn, means
that since Vi is strictly increasing in si and increasing at ties (at s∞ all are tied), Vi(s∞) <

Vi(σ (p∗)) = p∗. This is a contradiction, and shows that σ is continuous. �
Proof of Theorem 3. Ex Post. We will prove that the profile of strategies that in any auction
with active players A and signals of inactive players yN\A calls for a player with signal si to quit

at a price β
yN\A
i (si) = min{p: σ yN\A

(p) � si}, for σ as in Lemma A.1, is an ex post equilibrium.
We will then show that it is also efficient.

The first part of the proof (ex-post equilibrium) follows Krishna [9] Lemma 1 closely, but
does not use the fact that σ is unique or strictly increasing. Consider bidder 1 and suppose that
all bidders i > 1 are following the strategy βi . We show that player 1 does not have a profitable
deviation.

Consider first the case in which following β1 player 1 wins when active players are A and
signals are s: this can only happen if players in A\{1} drop at the same price, say p∗. We will
show that he earns a profit, no deviations are profitable: quitting before earns him 0, and he
can never change the price he pays. Without loss of generality, let A = {2,3, . . . , a}. Since all
strategies β are increasing, all bidders in A can infer the signals sN\A of inactive bidders from
the prices at which they dropped. Also, since player i = 2, . . . , a drop at p∗ and

βsN\A
i (si) = min

{
p: σ sN\A

(p) � si
} = p∗

we obtain si = σ sN\A
i (p∗). Moreover, s1 > σ sN\A

1 (p∗) and therefore V sN\A
1 (σ sN\A

(p∗)) = p∗ im-
plies

v1(s) = v1
(
s1, σ

sN\A
−1 (p∗), sN\A)

> v1
(
σ sN\A

(p∗), sN\A) = V sN\A
1

(
σ sN\A

(p∗)
) = p∗

which means that player 1 makes a profit, as was to be shown.
Consider the case in which β1 calls for bidder 1 to drop at some price p∗

1 in some sub-auction
with active bidders A = {1,2, . . . , a}, when the other players quit at signals sN\A, and suppose
that bidder 1 evaluates staying longer until he wins the object. Suppose he stays until winning
and that bidders quit in the order a, a − 1, a − 2, . . . ,2 at prices pa � · · · � p2, so that 1 wins at
a price p2. We will show that by doing this he cannot make a profit.

For p2, the price at which player 2 quits, s2 = σ sN\{1,2}
2 (p2) so (iii) of Lemma A.1 implies that

p2 � v1
(
σ sN\{1,2}

(p2), s−1
)
. (A.8)
1
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Then, since for each fixed pair (B, sN\B) the function σ sN\B
is increasing and when a bidder

j ∈ B drops out at pj , we get σ sN\B
(pj ) = σ sN\{B\{j }}

(pj ) (by (iv) of Lemma A.3), we obtain

σ sN\{1,2}
1 (p2) � σ sN\{1,2}

1 (p3) = σ sN\{1,2,3}
1 (p3) � σ sN\{1,2,3}

1 (p4) = σ sN\{1,2,3,4}
1 (p4) � · · ·

� σ sN\{A\{a}}
(pa) = σ sN\A

1 (pa) � σ sN\A
1

(
p∗

1

) = s1 (A.9)

(the last equality follows from the fact that player 1 was supposed to quit at p∗
1). Eqs. (A.8)

and (A.9) imply that p2 � v1(s) so that player 1 cannot make a profit by staying longer than
what his strategy calls for.

We have already shown that it is not profitable to quit when β1 calls for staying, and it is not
profitable to stay when β1 calls for quitting. We will now show that if in some off equilibrium
path, player 1 is still active at price p when he should have quit at price p∗

1 < p, then quitting is
a best response (in particular, it is better than winning at p). Let the set of active bidders at p be
J = {1, . . . , j}. Then, as in Eq. (A.9),

σ sN\J
1 (p) � σ sN\J

1 (pj+1) = σ sN\{J∪{j+1}}
1 (pj+1) � · · · � σ sN\A

1 (pa) � σ sN\A
1

(
p∗

1

) = s1

so that p � v1(σ
sN\J

(p), sN\J ) implies p � v1(s1, σ
sN\J
−1 (p), sN\J ). This means quitting, as his

strategy prescribes, is optimal. This completes the proof that the profile of strategies defined by σ

is an ex-post equilibrium. �
Proof of Theorem 3. Efficiency. Without loss of generality, suppose that at a profile of signals
s the winner is player 1 and that the last to quit is player 2 at price p2. Then, we have that
s1 > σ sN\{1,2}

1 (p2), s2 = σ sN\{1,2}
2 (p2) and v1(σ

sN\{1,2}
(p2), sN\{1,2}) = v2(σ

sN\{1,2}
(p2), sN\{1,2}).

The OEP then tells us that for

P = {
i: si >

(
σ sN\{1,2}

(p2), sN\{1,2})
i

}
we must have

v1(s) = max
i∈P

vi(s) � max
j /∈P

vj (s)

establishing efficiency. �
Before proceeding to the proof of Theorem 5, we prove Lemma 8, which in turn uses this

simple result.

Lemma A.5. If v satisfies the ACC, then for all P ⊂ N such that j ∈ P we have that for any s
with |W(s)| > 1 and i �= j∑

k∈P

∂vk(s)
∂sj

> |P |∂vi(s)
∂sj

.

Proof. The proof proceeds by induction on the size of P . We already know that the result is
true for P = N , so assume it is true for all P ′ with |P ′| = m + 1. In order to obtain a contradic-
tion, suppose that for some P with |P | = m, j ∈ P , and some s with |W(s)| > 1 and i �= j we
had

∑
P

∂vk

∂sj
� |P | ∂vi

∂sj
. In such a case, we must have i ∈ P, since otherwise, for P ′ = P ∪ {i}

we would have
∑

′ ∂vk � |P ′| ∂vi , contradicting the induction hypothesis. We must also have
P ∂sj ∂sj
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∂vi/∂sj > ∂vh/∂sj for all h /∈ P , since otherwise, for some h /∈ P with ∂vi/∂sj � ∂vh/∂sj we
would have that for P ′ = P ∪ {h}∑

k∈P

∂vk

∂sj
� |P |∂vi

∂sj
� |P |∂vh

∂sj
⇒

∑
P ′

∂vk

∂sj
� |P ′|∂vh

∂sj

contradicting the induction hypothesis. But then ∂vi/∂sj > ∂vh/∂sj for all h /∈ P , implies that∑
k∈P

∂vk

∂sj
� |P |∂vi

∂sj
⇒

∑
k∈P

∂vk

∂sj
+

∑
h/∈P

∂vh

∂sj
< |P |∂vi

∂sj
+ |N\P |∂vi

∂sj

⇔
∑
k∈N

∂vk

∂sj
< |N |∂vi

∂sj

which contradicts the ACC. This concludes the proof. �
Definition 7. The set of functions v satisfies the Equal Increments Condition if for all s with
|W(s)| > 1 and any P ⊂ N there exists j ∈ P such that for any i /∈ P , IP ∇vj > IP ∇vi .

We present a simple lemma that will help us show that both the Average Crossing Condition
and the Cyclical Crossing Condition imply the OEP. The key to showing that these conditions
imply the OEP is making the connection between the effect of one signal on all valuations (as
stated in the ACC and CCC) and the effect of several signals on the valuations of two players.

Lemma 8. If v satisfies the ACC or the CCC then it satisfies the Equal Increments Condition.

Lemma 8 asserts that when one increases the signals of a set of winners (by the same small
amount) then the total growth of the valuation of one of the players whose signal increased is
larger than the growth of any of those whose signals did not increase.

Proof. We first show that ACC implies the Equal Increments Condition. For all h ∈ P , and
i /∈ P , by Lemma A.5,

∑
P

∂vk(s)
∂sh

> |P | ∂vi (s)
∂sh

. Keeping i fixed, and adding over all h ∈ P , we
obtain∑

h∈P

∑
k∈P

∂vk(s)
∂sh

>
∑
h∈P

|P |∂vi(s)
∂sh

.

We can write the previous equation as∑
k∈P

IP ∇vk > |P |IP ∇vi.

This implies that for some j ∈ P , IP ∇vj > IP ∇vi as was to be shown.
Now assume that v satisfies the CCC, and pick any s with |W(s)| > 1 and any i /∈ P . We

must show that there exists j ∈ P such that IP ∇vj > IP ∇vi . Suppose first that there is some
k ∈ P with k < i and let j be the largest k in P which is still smaller than i. In order to show
that IP ∇vj > IP ∇vi , it will suffice to show that for all k ∈ P \{j}, ∂vj /∂sk � ∂vi/∂sk , since
then ∂vj /∂sj > ∂vi/∂sj will make the desired inequality strict. Notice that for all k < i, we have
k < j < i, so by the CCC, we have ∂vj /∂sk � ∂vi/∂sk . For k > i, we have that the CCC tells us
that

∂vk
>

∂v1 � ∂vj � ∂vi
.

∂sk ∂sk ∂sk ∂sk
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Suppose now that for the chosen i there is no k < i in P . For j ≡ maxk∈P P we will show,
as before, that for all k ∈ P \{j}, ∂vj /∂sk � ∂vi/∂sk . Notice that for all k ∈ P \{j} we have
i < k < j , so the CCC tells us that

∂vk

∂sk
>

∂vj

∂sk
� ∂vn

∂sk
� ∂v1

∂sk
� ∂vi

∂sk

as was to be shown. �
Proof of Theorem 5. Suppose the OEP is violated, so that there exists an s with |W(s)| > 1 and
an s′ � s such that s′

j > sj if and only if j ∈ P ⊂ W(s), and that for all j ∈ P , vj (s′) < vi(s′)
for some i. Without loss of generality, suppose P = {1, . . . ,m} and assume also without loss of
generality, that s′

1 − s1 � s′
2 − s2 � · · · � s′

m − sm. Define

α1 = max
{
α: ∃j ∈ P, vj (s + IP α) � vi(s + IP α) ∀i /∈ P

}
.

Note that if for any α � s′
1 − s1 we had that for some i /∈ P , and ∀j ∈ P , vj (s + IP α) <

vi(s+IP α), there would be some α∗ ∈ [0, α) such that for some j ∈ P and i /∈ P : vj (s+IP α∗) =
vi(s + IP α∗) and for all ε > 0, vk(s + IP [α∗ + ε]) < vi(s + IP [α∗ + ε]) for all k ∈ P . Taking
derivatives with respect to ε and evaluating at ε = 0, we obtain that for s′ = s + IP α∗ we have
|W(s′)| > 1, and that IP ∇vk(s + IP α∗) � IP ∇vi(s + IP α∗) for all k ∈ P , which contradicts
the Equal Increments Condition, and would thus by Lemma 8 conclude the proof. Assume then
α1 > s′

1 − s1.
Define then P2 = P \{1}, and

α2 = max
{
α: ∃j ∈ P2, vj

((
s′

1, s−1
) + IP2α

)
� vi

((
s′

1, s−1
) + IP2α

) ∀i /∈ P2
}
.

Since for all α � s′
1 − s1, ∃j ∈ P , such that vj (s + IP α) � vi(s + IP α) ∀i /∈ P , we have that

α = s′
1 − s1 belongs to the set over which the max is taken, so α2 is well defined. If we had

α2 � s′
2 − s2, we would obtain that there are j ∈ P2 and i /∈ P2 such that vj ((s

′
1, s−1) + IP2α2) =

vi((s
′
1, s−1) + IP2α2) and that for all ε > 0, vk((s

′
1, s−1) + IP2 [α2 + ε]) < vi((s

′
1, s−1) +

IP2 [α2 + ε]) for all k ∈ P2. Taking derivatives with respect to ε and evaluating at ε = 0, we
obtain that for s′ = (s′

1, s−1) + IP2α2 we have |W(s′)| > 1, and that for all k ∈ P2

IP2∇vk(s′) � IP2∇vi(s′)

which contradicts the Equal Increments Condition, and would thus by Lemma 8 conclude the
proof.

Fix some l � m and define s̃ = (s′
1, . . . , s

′
l−1, sl, sl+1, . . . , sn) and Pl = P \{1, . . . , l − 1}. As

an induction hypothesis, suppose that for some j ∈ Pl , vj (̃s) � vi (̃s) for all i /∈ Pl (we have
already proved this for l = 1 and l = 2) and define

αl = max
{
α: ∃j ∈ Pl, vj (̃s + IPl

α) � vi (̃s + IPl
α) ∀i /∈ Pl

}
.

Again, if we had αl � s′
l − sl we would obtain that there are j ∈ Pl and i /∈ Pl such that vj (̃s +

IPl
αl) = vi (̃s+IPl

αl) and that for all ε > 0, vk(̃s+IPl
[αl +ε]) < vi (̃s+IPl

[αl +ε]) for all k ∈ Pl .
Taking derivatives with respect to ε and evaluating at ε = 0, we obtain that for s′ = s̃ + IPl

αl we
have |W(s′)| > 1, and that IPl

∇vk(s′) � IPl
∇vi(s′) for all k ∈ Pl . This contradiction concludes

the proof. �
Proof of Theorem 4. Suppose there is an interior s, and an s′ � s with s′

j > sj iff j ∈ P ⊂
W(s) but that maxj : s′ >s vj (s′) < maxk: s′ =s vk(s′) (i.e. W(s′) ∩ P = ∅). Suppose, without loss
j j k k
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of generality that P = {1,2, . . . ,m} and W(s) = {1,2, . . . , k} for k � m. For all i /∈ W(s) and
j ∈ W(s) we have vi(s) < vj (s). By continuity of the v functions, there is ε1 > 0 such that for
all (

s∗
1 , . . . , s∗

k

) ∈ Bk
ε1

(s) = {
s∗ ∈ Rk:

∥∥s∗ − (s1, . . . , sk)
∥∥ < ε1

}
we have vi(s

∗
1 , . . . , s∗

k , sk+1, . . . , sn) < vj (s
∗
1 , . . . , s∗

k , sk+1, . . . , sn) for all i /∈ W(s) and j ∈
W(s). Moreover, since W(s′) ∩ P = ∅, there exists a small ε2 > 0 such that for all(

s∗
1 , . . . , s∗

k

) ∈ Bk
ε2

(s) = {
s∗ ∈ Rk:

∥∥s∗ − (s1, . . . , sk)
∥∥ < ε2

}
we also have that for s̃ = (s′

1, . . . , s
′
m, s∗

m+1, . . . , s
∗
k , sk+1, . . . , sn), W(̃s) ∩ P = ∅ (as W(s′) ∩

P = ∅).
Then, define B = Bk

ε1
(s) ∩ Bk

ε2
(s), and for each j ∈ W(s), define vk

j :B → R by vk
j (x) =

vj (x, sk+1, . . . , sn). Since s is interior and (by regularity) the Jacobian of vk = (vk
1, . . . , vk

k )

is invertible at (s1, s2, . . . , sk), the Inverse Function Theorem ensures that one can find
(s∗

1 , . . . , s∗
m, . . . , s∗

k ) ∈ B such that:
(a) for s∗ = (s∗

1 , . . . , s∗
k , sk+1, . . . , sn), W(s∗) = P (by the Inverse Function Theorem, we

can reduce the valuation vi for all i in W(s)\P , while keeping those of players in P con-
stant; for players i not in W(s) the fact that (s∗

1 , . . . , s∗
m, . . . , s∗

k ) ∈ B ⊂ Bk
ε1

(s) ensures that
vi(s

∗
1 , . . . , s∗

k , sk+1, . . . , sn) < vj (s
∗
1 , . . . , s∗

k , sk+1, . . . , sn) for any j ∈ W(s));
(b) for s̃ = (s′

1, . . . , s
′
m, s∗

m+1, . . . , s
∗
k , sk+1, . . . , sn), W(̃s) ∩ P = ∅.

Then, let μ(s∗) = μ(̃s) = 1/2. Since players not in P have no uncertainty in their type, their
bidding functions are just a (possibly) mixed strategy independent of the type. Let β be the
maximum element in the union of the supports of all bidding functions of players not in P

(when all players in P are active). Also, for players in P it is a dominant strategy to bid their
valuations (that have no uncertainty), so let β∗

i = vi(s∗) and β̃i = vi (̃s) for all i ∈ P (note that
since P = W(s∗) by item (a), β∗

i = β∗
j for all i, j ∈ P ).

By efficiency, and W(s∗) = P (item (a)), we must have that all players not in P must quit
with probability 1 before the price reaches β∗

i : for all i ∈ P ,

β∗
i � β. (A.10)

But since W(̃s) ∩ P = ∅ (item (b)) efficiency implies that we must also have that

β > max
i∈P

β̃i = max
i∈P

vi (̃s). (A.11)

Then, since vi is increasing at ties and strictly increasing in si , we have that for all i ∈ P ,
vi (̃s) > vi(s∗). This implies, together with Eqs. (A.10) and (A.11), that for all i ∈ P ,

β∗
i � β > max

i∈P
β̃i = max

i∈P
vi (̃s) > max

i∈P
vi(s∗) = max

i∈P
β∗

i

which is a contradiction. �
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