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APPARENT OVERCONFIDENCE

BY JEAN-PIERRE BENOÎT AND JUAN DUBRA1

It is common for a majority of people to rank themselves as better than average on
simple tasks and worse than average on difficult tasks. The literature takes for granted
that this apparent misconfidence is problematic. We argue, however, that this behavior
is consistent with purely rational Bayesian updaters. In fact, better-than-average data
alone cannot be used to show overconfidence; we indicate which type of data can be
used. Our theory is consistent with empirical patterns found in the literature.

KEYWORDS: Overconfidence, better than average, experimental economics, irra-
tionality, signalling models.

FOR A WHILE, THERE WAS A CONSENSUS among researchers that overconfi-
dence is rampant. Typical early comments include “Dozens of studies show that
people � � � are generally overconfident about their relative skills” (Camerer
(1997)), “Perhaps the most robust finding in the psychology of judgment is that
people are overconfident” (De Bondt and Thaler (1995)), and “The tendency
to evaluate oneself more favorably than others is a staple finding in social psy-
chology” (Alicke, Klotz, Breitenbecher, Yurak, and Vredenburg (1995)).2 Re-
cent work has yielded a more nuanced consensus: When the skill under con-
sideration is an easy one to master, populations display overconfidence in their
relative judgements, but when the skill is difficult, they display underconfidence
(see, for example, Kruger, Windschitl, Burrus, Fessel, and Chambers (2008)
and Moore (2007)). In this paper, we argue that both the earlier and the later
consensus are misleading: much of the supposed evidence for misconfidence
reveals only an apparent, not a true, overconfidence or underconfidence.

While we consider the evidence on overconfidence and underconfidence, for
expository purposes we emphasize overconfidence, since this is the bias that is
better known among economists. Overconfidence has been reported in peo-
ples’ beliefs in the precision of their estimates, in their views of their absolute
abilities, and in their appraisal of their relative skills and virtues. In this paper,
we analyze the last form of overconfidence (or underconfidence), which has

1We thank Stefano Sacchetto and Gabriel Illanes for their research assistance. We also thank
Raphael Corbi, Rafael Di Tella, John Duffy, Federico Echenique, Emilio Espino, P. J. Healy,
Richard Lowery, Henry Moon, Don Moore, Nigel Nicholson, Madan Pillutla, Matt Rabin, Ariel
Rubinstein, Luís Santos-Pinto, Jack Stecher, and Juan Xandri for their comments. Juan Dubra
gratefully acknowledges the financial support of ANII.

2Papers on overconfidence in economics include Camerer and Lovallo (1999), Fang and
Moscarini (2005), Garcia, Sangiorgi, and Urosevic (2007), Hoelzl and Rustichini (2005), Kőszegi
(2006), Menkhoff, Schmidt, and Brozynski (2006), Noth and Weber (2003), Sandroni and Squin-
tani (2007), Van den Steen (2004), and Zábojník (2004). In finance, recent (published) papers
include Barber and Odean (2001), Biais, Hilton, Mazurier, and Pouget (2005), Bernardo and
Welch (2001), Chuang and Lee (2006), Daniel, Hirshleifer, and Subrahmanyam (2001), Kyle and
Wang (1997), Malmendier and Tate (2005), Peng and Xiong (2006), and Wang (2001).
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been termed overplacement (underplacement) by Larrick, Burson, and Soll
(2007). Our analysis has implications for overconfidence in absolute abilities
as well, but it is not directly applicable to overconfidence in the precision of
estimates.

Myers (1999, p. 57) cited research showing that most people perceive them-
selves as more intelligent than their average peer, most business managers
rate their performance as better than that of the average manager, and most
high school students rate themselves as more original than the average high-
schooler. These findings, and others like them, are typically presented as ev-
idence of overconfidence without further comment. Presumably, the reason
for this lack of comment is that, since it is impossible for most people to be
better than average, or, more accurately, better than the median, it is obvious
that some people must have inflated self-appraisals. But the simple truism that
most people cannot be better than the median does not imply that most peo-
ple cannot rationally rate themselves above the median. Indeed, we show that
median comparisons, like the ones cited above, can never demonstrate that
people are overconfident. More detailed information, such as the percentage
of people who believe they rank above each decile and the strengths of these
beliefs, is needed.

As an illustration of our main point, consider a large population with three
types of drivers—low-skilled, medium-skilled, and high-skilled—and suppose
that the probabilities of any one of them causing an accident are fl = 47

80 ,
fm = 9

16 , and fh = 1
20 , respectively. In period 0, nature chooses a skill level for

each person with equal probability, so that the mean probability of an accident
is 2

5 . Initially, no driver has information about his or her own particular skill
level, and each person (rationally) evaluates himself as no better or worse than
average. In period 1, everyone drives and learns something about their skill,
based upon whether or not they have caused an accident. Each person is then
asked how his driving skill compares to the rest of the population.

How does a driver who has not caused an accident reply? Using Bayes’
rule, he evaluates his own skill level as follows: p(low skill | no accident) = 11

48 ,
p(medium skill | no accident) = 35

144 , p(high skill | no accident) = 19
36 . A driver

who has not had an accident thinks there is over a 1
2 chance (in fact, 19

36 ) that
his skill level is in the top third of all drivers, so that both the median and the
mode of his beliefs are well above average. His mean probability of an accident
is about 3

10 , which is better than for 2
3 of the drivers and better than the popula-

tion mean. Moreover, his beliefs about himself strictly first order stochastically
dominate (f.o.s.d.) the population distribution. Any way he looks at it, a driver
who has not had an accident should evaluate himself as better than average.
Since 3

5 of drivers have not had an accident, 3
5 rank themselves as above aver-

age and the population of drivers seems overconfident on the whole. However,
rather than being overconfident, which implies some error in judgement, the
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drivers are simply using the information available to them in the best possible
manner.3

Although in this example a driver who has not had an accident considers
himself to be above average whether he ranks himself by the mean, mode,
or median of his beliefs, such uniformity is not always the case; in general,
it is important to consider exactly how a subject is placing himself. Note that
the example can easily be flipped, by making accidents likely, to generate an
apparent underconfidence instead of overconfidence.

The experimental literature uses two types of experiments, those in which
subjects rank themselves relative to others and those in which subjects place
themselves on a scale. We show that, in contrast to ranking experiments, cer-
tain scale experiments should not have even the appearance of misconfidence.

There is a vast literature on overconfidence, both testing for it and providing
explanations for it. On the explanatory side, most of the literature takes for
granted that there is something amiss when a majority of people rank them-
selves above the median and seeks to pinpoint the nature of the error. Mistakes
are said to result from egocentrism (Kruger (1999)), incompetence (Kruger and
Dunning (1999)), or self-serving biases (Greenwald (1980)), among other fac-
tors. Bénabou and Tirole (2002) introduced a behavioral bias that causes peo-
ple to become overconfident.

A strand of the literature more closely related to ours involves purely ra-
tional Bayesian agents. In Zábojník (2004), agents who are uncertain of their
abilities, which may be high or low, choose in each period to either consume or
perform a test to learn about these abilities. Given technical assumptions on
the agents’ utilities, the optimal stopping rule of agents leads them to halt their
learning in a biased fashion, and a disproportionate number end up ranking
themselves as high in ability. Brocas and Carillo (2007) also have an optimal
stopping model, which can be interpreted as leading to apparent overconfi-
dence. In Kőszegi (2006), agents with a taste for positive self-image sample in
a way that leads to overplacement. Moore and Healy (2008) have a model in
which people are uncertain about both their abilities and the difficulty of the
task they are undertaking. In their model, people presented with a task that is
easier than expected may simultaneously overplace their rankings and under-
estimate their absolute performances, while the opposite holds true for those
presented with a task that is more difficult than expected.

3For a suggestive calculation using real-world data, in 1990 there were 13,851,000 drivers in
the United States aged 16–19, who were involved in 1,381,167 accidents (Massie and Campbell
(1993)). Invoking the so-called Pareto principle, let us suppose that 80% of the accidents were
caused by 20% of the drivers, and, for simplicity, that there were two types of drivers, good and
bad. The above data then yield that bad drivers have a θb = 2

5 chance of having an accident in
a single year, while good drivers have a θg = 1

40 chance. Using only accidents as a gauge, Bayes’
rule and some combinatorics yield that after 3 years, 79% of drivers will have beliefs about them-
selves that f.o.s.d. the population distribution.
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1. RANKING EXPERIMENTS

In a ranking experiment, a researcher asks each member of a population to
rank his “skill” relative to the other members of the group by placing himself,
through word or deed, into one of k equally sized intervals, or k-ciles (defined
formally below). Implicitly, the experimenter assumes that skills can be well
ordered—say by a one dimensional type—and that the distribution of actual
types has a fraction 1

k
in each k-cile. The experimenter assembles population

ranking data: a vector x ∈ Δk ≡ {x ∈ Rk
+ :

∑k

1 xi = 1}, where xi, i = 1� � � � �k, is
the fraction of people who rank themselves in the ith k-cile.

Svenson’s (1981) work is a prototypical example of a ranking experiment and
provides perhaps the most widely cited population ranking data. Svenson gath-
ered subjects into a room and presented them with the following instructions
(among others):

We would like to know about what you think about how safely you drive an automobile.
All drivers are not equally safe drivers. We want you to compare your own skill to the skills
of the other people in this experiment. By definition, there is a least safe and a most safe
driver in this room. We want you to indicate your own estimated position in this experi-
mental group. Of course, this is a difficult question because you do not know all the people
gathered here today, much less how safely they drive. But please make the most accurate
estimate you can.

Each subject was then asked to place himself or herself into one of ten inter-
vals, yielding population ranking data x ∈ Δ10. Svenson found that a large ma-
jority of subjects ranked themselves above the median. To determine if Sven-
son’s data evinced bias, inconsistency, or irrationality in his subjects, we need
a notion of what it means for data to be rational and consistent. We derive this
notion using an approach based upon the Harsanyi common prior paradigm.

We first define a rationalizing model (Θ�p�S� {fθ}θ∈Θ), where Θ ⊆ R is a type
space, p is a prior probability distribution over Θ� S is a set of signals, and
{fθ}θ∈Θ is a collection of likelihood functions: each fθ is a probability distri-
bution over S. We adopt the following interpretation of this model. There is
a large population of individuals. In period 0, nature draws a skill level, or
type, for each individual independently from p. Higher types correspond to
higher skill levels. The prior p is common knowledge, but individuals are not
directly informed of their own type. Rather, each agent receives information
about himself from his personal experience. This information takes the form of
a signal, with an individual of type θ ∈Θ receiving signal s ∈ S with probability
fθ(s). Draws of signals are conditionally independent. Given his signal and the
prior p, an agent updates his beliefs about his type using Bayes’ rule whenever
possible.

Our basic idea is that data are unproblematic if they can arise from a popu-
lation whose beliefs are generated within a rationalizing model. Implementing
this idea, however, is not completely straightforward. Recall that in Svenson’s
ranking experiment, his instructions state that he is asking “a difficult question
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because (the subjects) do not know all the people gathered� � � � much less how
safely they drive.” But even if this difficulty were not present—for instance, if
the subjects assumed that as a group they formed a representative draw from
a well known population—an issue would remain: Does a person know how
safely she herself drives? Of course, a driver has more information about her-
self than about a stranger, but there is no reason to presume that she knows
precisely how safe her driving is4 (even assuming that she knows exactly what
it means to drive “safely”5). Thus, a person may consider herself to be quite
a safe driver since she has never had an accident, rarely speeds, and generally
maneuvers well in traffic, but at the same time realize that the limited range
of her experience restricts her ability to make a precise self-appraisal. In rank-
ing herself, a subject must form beliefs about her own driving safety. Svenson
ignores this issue and, in effect, asks each subject for a summary statistic of
her beliefs without specifying what this statistic should be. There is no way to
know if subjects responded using the medians of their beliefs, the means, the
modes, or some other statistic. As a result, it is unclear what to make of Sven-
son’s data. Svenson’s experiment is hardly unique in this respect: much of the
overconfidence literature, and other literatures as well, share this feature that
the meaning of responses is not clear.6

Not all experiments share this ambiguity, however. For instance, the design
of Hoelzl and Rustichini (2005) induces subjects to place themselves according
to their median beliefs, while Moore and Healy (2008) calculated mean beliefs
from subjects’ responses. In the interest of space, in this paper we analyze rank-
ing data only under the assumption that subjects place themselves according to
their median types—that is, that a subject places himself into a certain k-cile if
he believes there is at least a probability 1

2 that his actual type is in that k-cile or
better and a probability 1

2 that his type is in that k-cile or below—or, more gen-
erally, according to some specific quantile of their types. In Benoît and Dubra
(2009), we established that the analysis is similar under different assumptions
about subjects’ responses (see below also).

The next definition says that data can be median-rationalized when they cor-
respond to the medians of the posteriors of a rationalizing model. We start
with some preliminary notation.

4Several strands of the psychology literature, including Festinger’s (1954) social comparison
theory and Bem’s (1967) self-perception theory stress that people are uncertain of their types. In
the economics literature, a number of papers start from the premise that, as Bénabou and Tirole
(2002) put it, “learning about oneself is an ongoing process.”

5Dunning, Meyerowitz, and Holzberg (1989) argued that people may have different notions of
what it means to drive safely, so that the data are not what they appears to be. Here, we give the
best case for the data and assume that all subjects agree on the meaning of a safe driver.

6Dominitz (1998), in critiquing a British survey of expected earnings, wrote “what feature of
the subjective probability distribution determines the category selected by respondents? Is it the
mean? Or perhaps it is the median or some other quantile. Or perhaps it is the category that
contains the most probability mass.”



1596 J.-P. BENOÎT AND J. DUBRA

• Given Θ, p, and k for each 0 ≤ i ≤ k, let Θi denote the ith k-cile: for
i ≤ k − 1� Θi = {θ ∈ Θ | i−1

k
≤ p(θ′ < θ) < i

k
} and Θk = {θ ∈ Θ | k−1

k
≤ p(θ′ <

θ)}. Note that a k-cile is a set of types, not a cutoff type, and that higher k-
ciles correspond to higher types. We do not include the dependence of Θi on
p and k, since this does not cause confusion.

• Given k and a rationalizing model (Θ�p�S� {fθ}θ∈Θ) for each 0 ≤ i ≤ k,
let Si denote the set of signals that result in an updated median type in Θi:

Si =
{
s ∈ S

∣∣∣∣ p
(

k⋃
n=i

Θn

∣∣∣ s) ≥ 1
2

and p

(
i⋃

n=1

Θn

∣∣∣ s) ≥ 1
2

}
�

Let F denote the marginal of signals over S: for each (measurable) T ⊂ S,
F(T)= ∫

Θ

∫
T
dfθ(s)dp(θ).

Thus, F(Si) is the (expected) fraction of people who will place their median
types in decile i when types are distributed according to p and signals are re-
ceived according to fθ.

DEFINITION 1: Given a type space Θ ⊆ R and a distribution p over Θ, the
population ranking data x ∈ Δk can be median-rationalized for (Θ�p) if there
is a rationalizing model (Θ�p�S� {fθ}θ∈Θ) with xi = F(Si) for i = 1� � � � �k.

The example in the introduction shows that x = (0� 2
5 �

3
5) can be median-

rationalized for Θ = {l�m�h} and p(h) = p(m) = p(l) = 1
3 . When ranking

data are median-rationalizable, they can arise from a Bayes-rational popula-
tion working from a common prior, and there is no prima facie case for calling
them biased.

The following theorem indicates when data can be median-rationalized. In
effect, a rational population can appear to be twice as confident as reality
would suggest, but no more. For instance, suppose that people place them-
selves into ten intervals (k= 10). Then apparently overconfident data in which
up to 2

10 of the people rank themselves in the top decile, up to 4
10 rank them-

selves in the top two deciles, and up to 2i
10 rank themselves in the top i deciles

for i = 3�4�5 can be rationalized. However, data in which 1
2 of the population

places itself in the top two deciles cannot be explained as rational.

THEOREM 1: Suppose that Θ ⊆ R and p is a distribution over Θ such that
p(Θi) = 1/k for all i. Then the population ranking data x ∈ Δk can be median-
rationalized for (Θ�p) if and only if, for i = 1� � � � �k,

k∑
j=i

xj <
2
k
(k− i+ 1)(1)



APPARENT OVERCONFIDENCE 1597

and

i∑
j=1

xj <
2
k
i�(2)

All proofs are provided in the Appendix.
Population ranking data x that satisfy the necessary conditions (1) and (2)

can be generated from a rational population with any distribution of types p,
provided only that p is legitimate in the sense that it partitions the population
uniformly into k-ciles.7 Conversely, if the necessary conditions are not satis-
fied,8 then no legitimate prior p can yield the data x.

The necessary part of Theorem 1 comes from the fact that Bayesian beliefs
must average out to the population distribution. When people self-evaluate
by their median type, 1

2 × ∑k

j=i xj is a lower bound on the weight their be-
liefs put into the top (k − i + 1) k-ciles. If (1) is violated for some i, then
too much weight (i.e., more than 1

k
(k − i + 1)) is put into these k-ciles. Sim-

ilarly for condition (2). The sufficiency part of the theorem is more involved,
although it is straightforward for the special case where each xi <

2
k

. For this
case, set S = (s1� � � � � sk) and let types θ ∈ Θi observe signal sj with probability
fθ∈Θi

(sj) = k( 1
k

− xi
2 )xj for i 	= j and fθ∈Θi

(sj) = k( 1
2 + 1

k
− xi

2 )xj for i = j. Then
(Θ�p�S� {fθ}θ∈Θ) median-rationalizes x for (Θ�p).

Theorem 1 is a corollary of a more general theorem, formally stated and
proved in the Appendix, that covers the case in which person i places himself
into a k-cile based on an arbitrary quantile q of his beliefs. In that case, data x
can be rationalized if and only if for all i,

k∑
j=i

xj <
1
qk

(k− i+ 1) and
i∑

j=1

xj <
1

(1 − q)k
i�(3)

As an application of this more general theorem to an experimental setting,
if a group of subjects is offered the choice between a prize of M if their score
on a quiz places them in the 8th decile or above and M with probability 0�7, at
most 43% should bet on their quiz placement.

Researchers often summarize population ranking data by the percentage of
people who place themselves above the population median. However, such
data cannot be used to show overconfidence. Theorem 1 shows that any frac-
tion r < 1 of the population can rationally place itself in the top half when peo-

7This restriction on p avoids uninteresting trivialities. If, for instance, the distribution p were
to assign all the weight to just the first two k-ciles, then even ( 1

k
� � � � � 1

k
) could not be median-

rationalized for any k > 2.
8In fact, conditions (1) only have bite for i > k+1

2 , while conditions (2) only have bite for i <
k+1

2 . (Since k+1
2 may or may not be an integer, it is easiest to state the conditions as we do.)
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ple self-evaluate using their median types. Benoît and Dubra (2009, 2011) es-
tablished that the same holds true when people self-evaluate using their mean
or modal types.9

In Svenson’s experiment, students in Sweden and the United States were
questioned about their driving safety and driving skill relative to their respec-
tive groups. Swedish drivers placed themselves into 10% intervals in the fol-
lowing proportions when asked about their safety:

Interval 1 2 3 4 5 6 7 8 9 10
Reports (%) 0.0 5.7 0.0 14.3 2.9 11.4 14.3 28.6 17.1 5.7

Note first that, although a majority of drivers rank themselves above the me-
dian, these population ranking data do not have an unambiguously overcon-
fident appearance, as fewer than 10% of the driver population place them-
selves in the top 10%. More importantly, Theorem 1 implies that these data
can be median-rationalized, as can the Swedish responses on driving skill. On
the other hand, on both safety and skill, Svenson’s American data cannot be
median-rationalized. For instance, 82% of Americans placed themselves in the
top 30% on safety and 46% placed themselves in the top 20% on skill. Thus,
Svenson did find some evidence of overconfidence, if his subjects based their
answers on their median types, but this evidence is not as strong as is com-
monly believed. Note also that when 46% of the population place themselves
in the top 20%, this is only 6% too many, not 26%.

Some researchers summarize their results by their subjects’ mean k-cile
placement, μ(x) = ∑k

i=1 ixi, and infer overconfidence if μ> k+1
2 . The following

corollary to Theorem 1 shows that much of this overconfidence is only appar-
ent.

COROLLARY 1: Suppose that Θ ⊆ R and p is a distribution over Θ such that
p(Θi)= 1/k for all i. Then the mean k-cile placement μ can come from popula-
tion ranking data that can be median-rationalized for (Θ�p) if and only if∣∣∣∣μ− k+ 1

2

∣∣∣∣< k

4
for k even�

∣∣∣∣μ− k+ 1
2

∣∣∣∣<
(
k− 1

k

)
4

for k odd�

Thus, when subjects are asked to place themselves into deciles, a mean place-
ment of, say, 7.9 is not out of order.

9Benoît and Dubra (2009) also showed how the ideas in this paper can be applied to game
theoretic settings, such as the entry games in Camerer and Lovallo (1999).
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We have modelled individuals who know the distribution of types in the pop-
ulation. It is easy to generalize beyond this, although a bit of care must be
taken, as the following example shows. Let the type space be Θ = [0�1]. In pe-
riod 0, nature chooses one of two distributions, p = U[0�1] with probability
4
5 < q < 1 or p′ =U[ 3

4 �1] with probability 1 −q. Nature then assigns each indi-
vidual a type, using the chosen distribution. In period 1, every one is informed
exactly of his type (e.g., fθ(θ) = 1) and then median-ranks himself. Although
individuals know their own types, the median plays a role since individuals are
not told which distribution nature used in assigning types. (Recall that a me-
dian placement in k-cile j means that a subject believes there is at least a 1

2
chance that his type lies in k-cile j or above (of the realized distribution) and
a 1

2 chance that it lies in j or below.10)
Suppose that, as it happens, nature used the distribution p′ in assigning

types, so that all types lie in the interval [ 3
4 �1]. After being informed of his

type, any individual believes there is a q

q+4(1−q)
> 1

2 chance that the distribution
of types is p. Since the lowest type is 3

4 , all individuals median-place them-
selves top quartile of the population. In contrast, Theorem 1 does not allow
more than half the individuals to place themselves in the top quartile. Note,
however, that we have analyzed the result of only one population distribution
draw, namely p′, and one draw is necessarily biased. If we consider a large
number of draws, so that a fraction q of the time the population distribution
is p, we will find that overall only the fraction (q× 1

4)+ ((1−q)×1) < 2
5 places

themselves in the top quartile, in line with the theorem.11

In general, we model a population of individuals who may be uncertain of
both their own types and the overall distribution of types using a quadruplet
(Θ�π�S� {fθ}θ∈Θ), where π is a prior over a set of probability distributions
over Θ, and making concomitant changes to the definitions of a k-cile, and
so forth. With this modelling, conditions (1) and (2) in Theorem 1 remain nec-
essary and sufficient for median-rationalization. Indeed, (1) and (2) remain
necessary in any environment in which Bayesian updaters start from a com-
mon and correct prior, since these conditions simply reflect the fact that beliefs
average out to the population distribution.

1.1. Monotone Signals

Theorem 1 describes when population ranking data can be rationalized,
without regard as to whether the collection of likelihood functions {fθ} used
is, in some sense, reasonable. While it may not be possible to specify exactly
what constitutes a reasonable collection of likelihood functions, it is possible

10Information on median placements can be induced by offering subjects the choice between
a prize with probability 1

2 and the prize if their type is at least in k-cile j.
11Uncertainty about the distribution of types can be interpreted as uncertainty about the diffi-

culty of the task, in the spirit of Moore and Healy (2008) (although our results differ from theirs).
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to identify some candidate reasonable properties. One such property is that
better types should be more likely to receive better signals (for instance, a safe
driver should expect to experience few adverse driving incidents) and, con-
versely, better signals should be indicative of better types. More precisely, given
Θ ⊆ R and S ⊆ R, we say that the collection of likelihood functions {fθ}θ∈Θ sat-
isfies the monotone signal property (m.s.p.) if (i) fθ′ f.o.s.d. fθ for θ′ > θ ∈ Θ and
(ii) for all s′ > s ∈ S, the posterior after s′ f.o.s.d. the posterior after s, for all
probability distributions p over Θ that assign probability 1/k to each k-cile.
A rationalizing model (Θ�p�S� {fθ}θ∈Θ) satisfies m.s.p. if {fθ}θ∈Θ satisfies m.s.p.

A standard restriction found in the literature is that the collection of
fθ’s should satisfy the monotone likelihood ratio property (m.l.r.p.): for all
θ′ > θ, fθ′ (s)

fθ(s)
is increasing in s. The m.l.r.p. is equivalent to insisting that f satisfy

properties (i) and (ii) for all p, not only those that assign probability 1
k

to each
k-cile (see Whitt (1980) and Milgrom (1981)). In our framework, the only pri-
ors p that are relevant are those that divide the type space evenly into k-ciles,
so the m.s.p. can be seen as the appropriate version of m.l.r.p. for our context.

The following theorem, which has been formulated with overconfident look-
ing data in mind, shows that the m.s.p. imposes more stringent necessary condi-
tions that population ranking data x must satisfy if they are to be rationalized.
When k ≤ 4, these conditions are also sufficient, while for k > 4, they are ap-
proximately sufficient in the following sense. Define h = min{n ∈ N :n > k/2}.
Say that vector y is comparable to x if yi = xi for i = h� � � � �k and y1 ≤ x1. If x
satisfies the necessary conditions, then there is a y comparable to x that can
be rationalized. The comparable vector y matches x exactly in the components
which are in the upper half, so that in this regard the overconfident aspect of
the data is explained. Below the median, however, we may need to do some re-
arranging. However, we do not do this by creating a large group of unconfident
people who rank themselves in the bottom k-cile.

THEOREM 2: Suppose that Θ ⊆ R and p is a distribution over Θ such that
p(Θi) = 1/k for all i. The population ranking data x ∈ Δk can be median-
rationalized for (Θ�p) by a rationalizing model that satisfies the monotone signal
property only if

k∑
j=i

xj

2j − i− 1
j − 1

<
2
k
(k− i+ 1) for i = 2� � � � �k�(4)

i∑
j=1

xj

k+ i− 2j
k− j

<
2
k
i for i = 1� � � � �k− 1�(5)

Suppose x 
 0. Then for k ≤ 4, the above inequalities are also sufficient. For
k > 4, if x satisfies (4) and (5), then there exists a y comparable to x that can
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be median-rationalized for (Θ�p) with a rationalizing model that satisfies the
monotone signal property.

For i = k, condition (4) yields xk < 2
k

, the same necessary condition as
in Theorem 1. For 2 ≤ i < k, however, the restrictions on the data are
more severe. Thus, for i = k − 1, we have xk−1 + xk

k
k−1 < 4

k
rather than

xk−1 + xk <
4
k

. To derive this tighter bound, suppose that data x are median-
rationalized by a rationalizing model that satisfies the m.s.p. As is shown
in the Appendix, x is then also median-rationalized by a model with k
signals—S = (s1� � � � � sk)—in which all agents within a k-cile j receive a sig-
nal si with the same probability fθ∈Θj

(si). For each i = 1� � � � �k, we have
(a)

∑k

j≥i fθ∈Θj
(si) >

k
2xi, so that an individual who sees signal si has unique

median type in Θi, and (b)
∑k

j=1 fθ∈Θj
(si) = kxi, so that the fraction xi see

signal si. Since the m.s.p. is satisfied, fθ∈Θj
(sk) is increasing in j. Therefore,∑k−1

j=1 fθ∈Θj
(sk) ≤ (k − 1)fθ∈Θk−1(sk) and, from (b), fθ∈Θk−1(sk) ≥ kxk−fθ∈Θk

(sk)

(k−1) ,
so that fθ∈Θk−1(sk−1) ≤ 1 − kxk−fθ∈Θk(sk)

(k−1) . Since fθ∈Θk
(sk−1) ≤ (1 − fθ∈Θk

(sk)), we

have 1 − kxk−fθ∈Θk
(sk)

(k−1) + (1 − fθ∈Θk
(sk)) = 2 − fθ∈Θk

(k−2)+kxk

k−1 ≥ fθ∈Θk−1(sk−1) +
fθ∈Θk

(sk−1) >
k
2xk−1, where the last inequality follows from (a). Again from (a),

we have 2 − (k/2)xk(k−2)+kxk
k−1 > 2 − fθ∈Θk

(sk)(k−2)+kxk

k−1 > k
2xk−1, as was to be shown.

Conditions (4) and (5) are not sufficient since, for instance, the data
( 8

25 �
1

75 �
1

75 �
1

15 �
4
15 �

8
25) cannot be rationalized with monotone signals, although

the comparable vector ( 9
75 �

9
75 �

8
75 �

1
15 �

4
15 �

8
25) can be. In the Appendix, we show

by direct construction that such a counterexample cannot arise when k ≤ 4.
The reason is that the m.s.p. places fewer demands on the likelihood functions
when there are fewer signals, and fewer signals are needed when k is smaller.

While the monotone signal property imposes tighter bounds on population
ranking data, plenty of scope for apparent overconfidence remains. In partic-
ular, the m.s.p. still allows any fraction r < 1 of the population to place itself
above the median and vectors comparable to Svenson’s Swedish data.

1.2. Some Empirical Considerations

Kruger (1999) found a “below-average effect in domains in which absolute
skills tend to be low.” Moore (2007), surveying current research, wrote that
“When the task is difficult or success is rare, people believe that they are be-
low average,” while the opposite is true for easy tasks. As suggested by the
phrase “success is rare,” some tasks are evaluated dichotomously: success or
failure. Call an easy task one where more than half the people succeed and call
a difficult task one where more than half the people fail. If people evaluate
themselves primarily on the basis of their success or failure on the task—in the
limit, if their only signal is whether or not they succeed—then rational updating
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will lead to a better-than-average effect on easy tasks and a worse-than-average
effect on difficult ones.12 Formally, this situation is described by a rationalizing
model (Θ�p�S� {fθ}θ∈Θ) with S = {0�1} and fθ(1) increasing in θ, which yields
the fraction F(1) = ∫

fθ(1)dp(θ) of the population with median type above
the population median.

Comparing two dichotomously evaluated tasks F and G with rationalizing
models (Θ�p�S� {fθ}θ∈Θ) and (Θ�p�S� {gθ}θ∈Θ), if gθ f.o.s.d. fθ for all θ, then
G is an easier task on which to succeed and more people will rate themselves
above the median on G than F . While this observation is in keeping with the
current wisdom on the effect of ease, this simple comparative static does not
generalize to tasks that are not evaluated dichotomously.

Suppose that F and G are two tasks in which competence is evaluated on the
basis of three signals. On each task, 50% of the population is of type θL and
50% is of type θH > θL. The likelihood functions for the tasks are fθL(1) = 2

3 ,
fθL(2) = 1

3 , fθH (2) = 1
2 , and fθH (3) = 1

2 on task F , and gθL(1) = 1
2 , gθL(2) =

1
2 , gθH (2) = 1

3 , and gθH (3) = 2
3 on task G . Both {fθ}θ∈Θ and {gθ}θ∈Θ satisfy the

monotone signal property, so that a higher signal can be interpreted as a better
performance. Since gθ f.o.s.d. fθ for all θ, these better performances are easier
to obtain on task G than on task F . Nevertheless, only 1

3 of the population will
place itself in the top half on G , while 2

3 of the population will place itself in
the top half of the population on F . On the face of it, this example conflicts
with the claim that easier tasks lead to more overconfidence; on reflection,
this is not so clear. Given the way that low and high types perform on the two
tasks, a case can be made that “success” on task F is a signal of 2 or above,
while success on task G is a signal of 3. Then more people succeed on F than
on G , and task F is the easier task. (In a more concrete vein, a judgement as to
whether bowling is easier than skating depends on how one defines success in
the two activities.) This ambiguity cannot arise when there are only two signals.

At a theoretical level, it is unclear exactly how to define the ease of a task, in
general, and how to establish a clear link between ease and apparent overcon-
fidence.13 This suggests that the current wisdom on the impact of ease needs
to be refined and reexamined. In line with this suggestion, Grieco and Hoga-
rth (2009) found no evidence of a hard/easy effect, and while Kruger (1999)
did find such an effect, his data contain notable exceptions.14 Moreover, even

12Moore also noted that “people believe that they are more likely than others to experience
common events—such as living past age 70—and less likely than others to experience rare events
such as living past 100.” By interpreting experiencing the event as a “success” (for instance, having
a parent live past 70 would be a success) and not experiencing it as “failure,” we obtain this
prediction about people’s beliefs.

13However, it is possible to establish such a link for specific cases beyond dichotomous tasks.
In Benoît and Dubra (2011), we showed that the findings of Hoelzl and Rustichini (2005) and
Moore and Cain (2007) on ease can be generated within our framework.

14For instance, although Kruger categorized organizing for work as a difficult task, this task also
displays a large better-than-average effect.
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when our approach predicts a better-than-average effect on a task, it does not
necessarily predict that too many people systematically place themselves in the
upper k-ciles; that is, that the population ranking data f.o.s.d. the uniform dis-
tribution. As far as we know, the current literature makes no claims in this re-
gard, and it is worth recalling that while Svenson found a better-than-average
effect in his Swedish drivers, he also found that too few people rank themselves
in the top 10% on safety (and the top 20% on skill).

We turn now to some empirical evidence on how experience affects the de-
gree of apparent overconfidence.

Generally speaking, as people gather more information about themselves,
they derive tighter estimates of their types. A population with tight estimates
can be captured in our framework by only allowing rationalizing models in
which, after updating, individuals are at least c% sure of the k-cile in which
their types lie, for some large c. As a corollary to conditions (3), as c increases,
the fraction of people who can rationally place themselves above the median
gets closer and closer to 1

2 . This suggests that populations with considerable
experience should exhibit little misconfidence. In keeping with this prediction,
Walton (1999) interviewed professional truck drivers, who each drive approxi-
mately 100,000 kilometers a year, and found no bias in their self-assessments of
their relative skills. He did find that a majority claim to be safer drivers than av-
erage; however, it is quite possible that most of the truckers had only had safe
driving experiences, so that a majority could rationally rank themselves highly.
Experience also comes with age, and the evidence on age and overconfidence
is mixed. While some researchers have found that misplacement declines with
age, others have found no relation.15

Accidents and moving violations are, presumably, negative signals about
a driver’s safety. Despite this, Marotolli and Richardson (1998) found no dif-
ference between the confidence levels of drivers who have had adverse driving
incidents and those who have not, which points against the hypothesis that
they are making rational self-evaluations.16 On the other hand, Groeger and
Grande (1996) found that although drivers’ self-assessments are uncorrelated
to the number of accidents they have had, their self-assessments are positively
correlated to the average number of accident-free miles they have driven. The
number of accident-free miles seems to be the more relevant signal, as one
would expect better drivers to drive more, raising their number of accidents.

15For instance, Mathews and Moran (1986) and Holland (1993) found that drivers’ overplace-
ment declines with age, while Marotolli and Richardson (1998) and Cooper (1990) found no such
decline.

16Note that interpreting the evidence can be a bit tricky. For instance, an accident may lead
a driver to conclude that he used to be an unsafe driver, but that now, precisely because he has
had an accident, he has become quite a safe driver.
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2. SCALE EXPERIMENTS

In a scale experiment, a scale in the form of a real interval and a popula-
tion average are specified (sometimes implicitly), and each subject is asked to
place himself somewhere on the scale.17 Population scale data comprise a triplet
(Θ�m� ā), where Θ ⊂ R is a real interval, m ∈ Θ is a population average, and
ā ∈ Θ is the average of the placements.

The idea underlying scale experiments is that in a rational population, self-
placements should average out to the population average. When the scale is
subjective, this presumption is, at best, debatable, so let us restrict ourselves
to experiments with an objective scale (for a brief discussion of the issues with
a subjective scale, see Benoît and Dubra (2009)). As an example, Weinstein
(1980) asked students how their chances of obtaining a good job offer before
graduation compare to those of other students at their college, with choices
ranging from 100% less than average to 5 times the average. Here there is
no ambiguity in the meaning of the scale. However, two ambiguities remain;
namely, what is meant by an average student and what a subject means by
a point estimate of his or her own type.

To illustrate, suppose for the sake of discussion that all of Weinstein’s sub-
jects agree that there are two types of students at their college—low and high—
who have job offer probabilities pL = 0�3 and pH = 1, and that 80% of the pop-
ulation are low type. A reasonable interpretation of an average student is one
whose chance of obtaining an offer is 0�3. Consider a respondent who thinks
that there is a 50% chance that she is a low type. Her probability of obtain-
ing a good job offer is (0�5 × 0�3) + (0�5 × 1) = 0�65. A perfectly reasonable
response to Weinstein’s question is that her chances are 35% above average.
Thus, one sensible way to answer the question uses the population median,
or mode, to determine what an average student is, but uses the mean of own
beliefs to self-evaluate.

Just considering medians and means, there are four ways to interpret an-
swers to (unincentivized) scale questions. It is fairly obvious that in the three
cases involving the median, apparent overconfidence will not imply overconfi-
dence, since there is no particular reason for median calculations to average
out. Theorem 3, which is a simple consequence of the fact that beliefs are
a martingale, concerns the remaining case. It says that when a rational pop-
ulation reports their mean beliefs, these reports must average out to the actual
population mean.

17In some experiments, the scale Θ is not an interval of real numbers, but, say, a set of integers.
This may force some subjects to round off their answers, leading to uninteresting complications,
which we avoid.
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DEFINITION 2: The population scale data (Θ�m� ā) can be rationalized if
there is a rationalizing model (Θ�p�S� {fθ}θ∈Θ) such that m = E(θ) and ā =∫
Θ
θdc, where c is the probability distribution defined by

c(T)= F{s :E(θ | s) ∈ T } for T ⊂ Θ�

THEOREM 3: Population scale data (Θ�m� ā) can be rationalized if and only
if ā= m.

Clark and Friesen (2009) reported a scale experiment in which subjects are
incentivized to, in effect, report their mean beliefs relative to the population
mean. In keeping with Theorem 3, the experiment found no apparent overcon-
fidence or underconfidence.18 Moore and Healy (2008) ran a set of incentivized
scale experiments which yield no misconfidence in some treatments and mis-
confidence in others.

3. CONCLUSION

Early researchers found a universal tendency toward overplacement. Psy-
chologists and economists developed theories to explain this overplacement
and explore its implications. Implicit in these theories was the presumption
that a rational population should not overplace itself. We have shown, how-
ever, that there is no particular reason for 50% of the population to place itself
in the top 50%. At an abstract level, our theory implies that rational popula-
tions should display both overplacement and underplacement, and this is what
more recent work has uncovered.

Many of the overplacement studies to date have involved experiments that
are, in fact, of limited use in testing for overconfidence. Our results point to the
type of experimental design that can provide useful data in this regard. In par-
ticular, experiments should yield information about the strengths of subjects’
beliefs and information beyond rankings relative to the median.19 If, say, 65%
of subjects believe there is at least an 0.7 chance that they rank in the top 40%,
the population displays (true) overconfidence. Note, however, that this does
not demonstrate that 25% of the subjects are overconfident. In the extreme,
as much as 57% of the population could rationally hold such a belief. Thus,
the overconfidence of a few can produce quite overconfident looking data and

18In one variant of their experiment, Clark and Friesen found that subjects underestimate their
absolute performance.

19In line with these requirements, the recent experimental paper of Merkle and Weber (2011)
asked for subjects’ belief distributions, while Burks, Carpenter, Goette, and Rustichini (2011)
provided incentives designed to elicit modal beliefs, which they then combined with information
on actual performance. Prior work by Moore and Healy (2008) used a quadratic scoring rule
to elicit beliefs. Karni (2009) described a different procedure for eliciting detailed information
about subjects’ beliefs.
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it may be misleading to broadly characterize a population as overconfident. At
the same time, 65% of subjects could rationally hold that there is an 0.6 chance
they are in the top 40%, so that a slight degree of overconfidence can also lead
to quite overconfident looking data.

For the sake of discussion, let us suppose that Svenson’s subjects answered
his questions using their median beliefs about themselves. Then we have shown
that Svenson’s Swedish data can be rationalized but that his American data
cannot. On one interpretation, we have explained his Swedish data but not
his American data. We prefer a different interpretation; namely, that we have
provided a proper framework with which to analyze Svenson’s data. This
framework shows that his American data display overconfidence, but that his
Swedish data do not.

Some psychologists and behavioral economists may be uneasy with our ap-
proach on the prior grounds that individuals do not use Bayes’ rule and, for
that matter, may not even understand simple probability. Even for these re-
searchers, however, the basic challenge of this paper remains: To indicate why,
and in what sense, a finding that a majority of people rank themselves above
the median is indicative of overconfidence. If such a finding does not show over-
confidence in a Bayes’ rational population, there can be no presumption that it
indicates overconfidence in a less rational population. It is, of course, possible
that people are not rational, but not overconfident either.

APPENDIX

Theorem 1 is a special case of a theorem which we present after the following
definitions. For each i, let Sq

i denote the set of signals that result in an updated
qth percentile in Θi:

S
q
i =

{
s ∈ S

∣∣∣∣ p
(

k⋃
n=i

Θn

∣∣∣ s) ≥ q and p

(
i⋃

n=1

Θn

∣∣∣ s) ≥ 1 − q

}
�

Given a type space Θ ⊆ R and a distribution p over Θ, the population
ranking data x ∈ Δk can be q-rationalized for (Θ�p) if there is a rationalizing
model (Θ�p�S� {fθ}θ∈Θ) with xj = F(S

q
j ) for j = 1� � � � �k. Note that median-

rationalizing is q-rationalizing for q = 1
2 .

THEOREM 4: Suppose that Θ ⊆ R and p is a distribution over Θ such that
p(Θi) = 1/k for all i. For q ∈ (0�1), the population ranking data x ∈ Δk can be
q-rationalized for (Θ�p) if and only if, for i = 1� � � � �k,

k∑
j=i

xj <
k− i+ 1

qk
(6)
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and

i∑
j=1

xj <
i

(1 − q)k
�(7)

The proof of Theorem 4 proceeds as follows. Given a type space Θ and prior
p, we construct likelihood functions such that every type in a given k-cile i
observes signals with the same probability. This allows us to identify every
θ ∈ Θi with one type in Θi, and without loss of generality (w.l.o.g.) work with
a type space {θ1� � � � � θk}. The key to q-rationalizing a vector x is finding a non-
negative matrix A = (Aji)

k
j�i=1 such that xA = ( 1

k
� � � � � 1

k
)�

∑k

i=1 Aji = 1, and∑j

i=1 Aji > 1 − q and
∑k

i=j Aji > q� for all j� Then, the matrix A can be inter-
preted as the rationalizing model that q-rationalizes x as follows. Nature picks
(in an independent and identically distributed (i.i.d.) fashion) for each indi-
vidual a type θi and a signal sj with probability xjAji� Each k-cile Θi then has
probability 1/k since xA = ( 1

k
� � � � � 1

k
). The likelihood functions are given by

fθi(sj)= kxjAji and row j of A is then the posterior belief after signal sj . Since∑j

i=1 Aji > 1 − q and
∑k

i=j Aji > q, and the number of people observing sj is
xj , the rationalizing model q-rationalizes x.

PROOF OF THEOREM 4:
Sufficiency for q-rationalization.
Step 1. Suppose q ∈ (0�1) and that x ∈ Δk is such that inequalities (6) and

(7) hold. We show that there exists a nonnegative k × k matrix A = (Aji)
k
j�i=1

such that xA = ( 1
k
� � � � � 1

k
)� and for all j,

∑k

i=1 Aji = 1,
∑j

i=1 Aji > 1 − q, and∑k

i=j Aji > q�

Pick d such that min{ 1
q
� 1

1−q
� k+1

k
}> d > 1 and for all i�

k∑
j=i

xj ≤ k− i+ 1
qdk

and
i∑

j=1

xj ≤ i

(1 − q)dk
�(8)

We say that r ∈ Δk can be justified if there exists a nonnegative k × k ma-
trix R� such that xR = r� and for all i,

∑k

i=1 Rji = 1,
∑j

i=1 Rji ≥ (1 − q)d, and∑k

i=j Rji ≥ qd� Let R be the set of distributions that can be justified. Note that
R is nonempty, since x itself can be justified by the identity matrix. Further-
more, R is closed and convex. We now show that ( 1

k
� � � � � 1

k
) ∈ R�

Assume all inequalities in (6) and (7) hold, but that ( 1
k
� � � � � 1

k
) /∈ R. Then,

since f (t) = ‖t − ( 1
k
� � � � � 1

k
)‖2 is a strictly convex function, there is a unique r

such that ( 1
k
� � � � � 1

k
) 	= r = arg mint∈R f (t). Let R be a matrix that justifies r.
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Since r 	= ( 1
k
� � � � � 1

k
), there exists some ri 	= 1

k
, and since r ∈ Δk, there must

be some i for which ri >
1
k

and some i for which ri <
1
k

. Let i∗ = max{i : ri 	= 1
k
}

and i∗ = min{i : ri 	= 1
k
}.

Part A. We prove that ri∗� ri∗ <
1
k

. Suppose instead that ri∗ >
1
k

(a similar
argument establishes that ri∗ <

1
k

). Then, for all i > i∗, ri = 1
k

and for some
i < i∗� ri < 1

k
. Let ı̃= max{i : ri < 1

k
}. We show that for all i > ı̃, (a) for any j such

that j ≤ ı̃ or j > i, either xj = 0 or Rji = 0; (b) either xi = 0 or
∑k

g=i Rig = dq.
To see (a), fix an i′ > ı̃, and suppose xj′ > 0 and Rj′i′ > 0 for some j′ ≤ ı̃ or

j′ > i′. Define the matrix R̃ by R̃j′ ı̃ =Rj′ ı̃ + εRj′i′ , R̃j′i′ = (1 − ε)Rj′i′ , and for all
(j� i) /∈ {(j′� i′)� (j′� ı̃)}, R̃ji =Rji. We have

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

for j 	= j′�
j∑

i=1

R̃ji =
j∑

i=1

Rji ≥ d(1 − q) and

k∑
i=j

R̃ji =
k∑
i=j

Rji ≥ dq;

if j′ ≤ ı̃�

j′∑
i=1

R̃j′i ≥
j′∑
i=1

Rj′i ≥ d(1 − q) and

k∑
i=j′

R̃j′i =
k∑

i=j′
Rj′i + εRj′i′ − εRj′i′ ≥ dq;

if i′ < j′�
j′∑
i=1

R̃j′i =
j′∑
i=1

Rj′i + εRj′i′ − εRj′i′ ≥ d(1 − q) and

k∑
i=j′

R̃j′i =
k∑

i=j′
Rj′i ≥ dq�

(i)

For ε sufficiently small, define r̃ = xR̃. We have r̃ı̃ = r̃i + xj′εRj′i′ , r̃i′ = ri′ −
xj′εRj′i′ , and, for i /∈ {i′� ı̃}, r̃i = ri. Therefore

∑k

i=1 r̃i = ∑k

i=1 ri = 1. For small
enough ε, 1 ≥ r̃i ≥ 0 for all i, since xj′�Rj′i′ > 0 implies that ri′ > 0. Hence
r̃ ∈ Δk and, given (i), r̃ ∈ R.

We now show that f (r̃) < f(r):

f (r̃)− f (r) =
(
rı̃ + xj′εRj′i′ − 1

k

)2

−
(
rı̃ − 1

k

)2

(9)

+
(
ri′ − xj′εRj′i′ − 1

k

)2

−
(
ri′ − 1

k

)2



APPARENT OVERCONFIDENCE 1609

= (xj′εRj′i′)
2 + 2xj′εRj′i′

(
rı̃ − 1

k

)
+ (xj′εRj′i′)

2

− 2xj′εRj′i′

(
ri′ − 1

k

)
= 2(xj′εRj′i′)

[
xj′εRj′i′ + rı̃ − 1

k
− ri′ + 1

k

]
= 2(xj′εRj′i′)[xj′εRj′i′ + rı̃ − ri′ ]�

Recall that rı̃ <
1
k

, and since i′ > ı̃, ri′ ≥ 1
k

. Hence, for ε sufficiently small,
[xj′εRj′i′ + r̃i − ri′ ] < 0. We have a contradiction, since, by definition r =
arg mint∈R f (t).

To see (b), suppose that for some j′ > ı̃, we have xj′ > 0 and
∑k

g=j′ Rj′g > dq.
Pick some i′ ≥ j′ with Rj′i′ > 0� For ε sufficiently small, define R̃ by R̃j′ ı̃ =Rj′ ı̃ +
εRj′i′ , R̃j′i′ = (1 − ε)Rj′i′ , and, for all (j� i) /∈ {(j′� i′)� (j′� i′)}, R̃ji = Rji. Define
r̃ = xR̃. As before, r̃ ∈ R and f (r̃) < f(r), a contradiction.

Given (a) and (b), and recalling the definition of ı̃, we have

k− ı̃

k
<

k∑
t=ı̃+1

rt =
k∑

t=ı̃+1

k∑
j=1

xjRjt

=
k∑

t=ı̃+1

k∑
j=ı̃+1

xjRjt (by (a)� j ≤ ı̃ implies xj = 0� or Rjt = 0)

=
k∑

j=ı̃+1

xj

k∑
t=ı̃+1

Rjt

=
k∑

j=ı̃+1

xj

k∑
t=ı̃+1

Rjt (by (a) j > t > ı̃⇒ xj = 0 or Rjt = 0)

=
k∑

j=ı̃+1

xjdq (by (b) either xj = 0 or
∑k

t=j
Rjt = dq)

≤ k− ı̃

k
(by definition of d and assumption of the theorem)�

Thus, we have a contradiction.
Part B. From Part A, there exists an î, i∗ < î < i∗, such that r̂i >

1
k

. Since
r̂i =

∑k

j=1 xjRĵi, for some j∗ we must have Rj∗̂i > 0. We now show that this leads
to a contradiction.

Consider a small enough ε.
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• Suppose first that for all j 	= î� Rĵi = 0 so that j∗ = î and R̂îi > 0. Then we
know that R̂îix̂i = r̂i >

1
k

⇒ R̂îi >
1
k
� If

∑j∗
i=1 Rj∗i = (1−q)d and

∑k

i=j∗ Rj∗i = qd�
we get

d =
j∗∑
i=1

Rj∗j +
k∑

i=j∗
Rj∗j = 1 +Rj∗j∗ = 1 + R̂îi > 1 + 1

k
> d�

which is a contradiction. Hence we must have
∑j∗

i=1 Rj∗j > (1 − q)d or∑k

i=j∗ Rj∗j > qd� Suppose therefore that
∑j∗

i=1 Rj∗i > (1 − q)d (an analogous
argument can be made if

∑k

i=j∗ Rj∗i > qd). Define R̃ by R̃j∗i∗ = Rj∗i∗ + εRj∗j∗ ,
R̃j∗j∗ = (1−ε)Rj∗j∗ , and, for all (j� i) /∈ {(j∗� j∗)� (j∗� i∗)}� R̃ji = Rji. We can then
verify that for small enough ε, for all j�

∑j

i=1 R̃ji ≥ (1 − q)d and
∑k

i=j R̃ji ≥ qd.
Defining r̃ = xR̃, we obtain f (̃r) < f(r)—a contradiction.

• Suppose instead that j∗ 	= î� If j∗ < î, define R̃ by R̃j∗̂i = (1 − ε)Rj∗̂i,
R̃j∗i∗ = Rj∗i∗ + εRj∗̂i, and R̃ji = Rji for all (j� i) /∈ {(j∗�̂ i)� (j∗� i∗)}. If j∗ > î�

define R̃ by R̃j∗i∗ = Rj∗i∗ + εRj∗̂i, R̃j∗̂i = (1 − ε)Rj∗̂i, and R̃ji = Rji for all
(j� i) /∈ {(j∗�̂ i)� (j∗� i∗)}. In any case, for all j 	= j∗� R̃ji = Rji so

∑j

i=1 R̃ji ≥
d(1 − q) and

∑k

i=j R̃ji ≥ dq; for j = j∗, if j∗ < î�
∑j

i=1 R̃ji = ∑j

i=1 Rji ≥ (1 − q)d

and
∑k

i=j R̃ji = ∑k

i=j Rji − εRj∗̂i + εRj∗̂i ≥ dq; for i = j∗, if j∗ > î�
∑j

i=1 R̃ji =∑j

i=1 Rji − εRj∗̂i + εRj∗̂i ≥ (1 − q)d and
∑k

i=j R̃ji = ∑k

i=j Rji ≥ dq. For r̃ = xR̃,
it is easy to show (as in (9)) that f (̃r) < f(r)—a contradiction.

Parts A and B show that ( 1
k
� � � � � 1

k
) ∈ R. Let A be the matrix that justifies

( 1
k
� � � � � 1

k
).

Step 2. Suppose that q� x� and A are as in Step 1. Given any Θ and p such
that p(Θi) = 1

k
for each i, let S = {1�2� � � � �k} and fθ(j) = kxjAji, for θ ∈ Θi,

i� j = 1� � � � �k. To complete the proof of sufficiency, we show that (Θ�S� f�p)
q-rationalizes x for (Θ�p); that is, xj = F(Sj).

(i) xj = F(j), since

F(j) =
(

k∑
i=1

kxjAji

)
1
k

=
k∑
i=1

xjAji = xj

k∑
i=1

Aji = xj�

(ii) j ∈ Sj since

p(Θi | j)=
kxjAji

1
k

xj

=Aji�

∑j

i=1 Aji > 1 − q, and
∑k

i=j Aji > q.
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(iii) g 	= j ⇒ g /∈ Sj . Suppose g > j. We have
∑k

i=g Agi > q ⇒ ∑g−1
i=1 Agi <

1 − q ⇒ ∑j

i=1 Agi < 1 − q, so that g /∈ Sj� Similarly, j > g implies g /∈ Sj .
(i), (ii), and (iii) establish that xj = F(j).
Necessity. Suppose data x can be q−rationalized for some (Θ�p)� and let

(Θ�p�S� {fθ}θ∈Θ) be the rationalizing model. Fix an i and let Si = ⋃k

g=i S
q
g � For

each signal s ∈ Si, p(
⋃k

g=i Θg | s) ≥ q� If
∑k

j=i xj = 0, inequalities (6) (and (7))
hold trivially, so suppose

∑k

j=i xj > 0. Since xj = F(S
q
j ) for all j, we have

F(S
q
j ) > 0 for some i ≤ j ≤ k.

For any j� let Tj = {s ∈ S
q
j :p(

⋃k

i=j Θi | s) = q}� For any s ∈ T1, we have 1 =
p(Θ | s) = p(

⋃k

i=1 Θi | s) = q < 1� so we must have T1 = ∅� Assume now j ≥ 2�
For any s ∈ Tj , p(

⋃j−1
i=1 Θi | s) = 1 − q� so that s ∈ S

q
j−1� Thus, s ∈ Tj implies

s ∈ S
q
j and s ∈ S

q
j−1. If F(Tj) > 0� then F(S

q
j ∪ S

q
j−1) < F(S

q
j )+ F(S

q
j−1) so that

1 = F(S) ≤ F

( ⋃
g 	=j�j−1

Sq
g

)
+ F(S

q
j ∪ S

q
j−1)

< F

( ⋃
g 	=j�j−1

Sq
g

)
+ F(S

q
j )+ F(S

q
j−1)

≤
∑

g 	=j�j−1

xg + xj + xj−1 = 1� a contradiction�

Thus, for all j, F(Tj) = 0� and for almost every s ∈ Si, p(
⋃k

g=i Θg | s) > q�
Hence,

k− i+ 1
k

= p

(
k⋃

g=i

Θg

)
=

∫
p

(
k⋃

g=i

Θg

∣∣∣ s)dF(s)

≥
∫
Si
p

(
k⋃

g=i

Θg

∣∣∣ s)dF(s) >

∫
Si
q dF(s) = q

k∑
j=i

xj�

A similar argument applies for inequalities in (7). Q.E.D.

PROOF OF COROLLARY 1: First note that for any x′�x ∈ Δk, if x′ f.o.s.d.
x 	= x′, then μ(x′) > μ(x). Let M be the set of median-rationalizable vec-
tors. By Theorem 1, M is characterized by a set of linear inequalities,
so M is a convex set. Suppose k is even. From Theorem 1, supx∈M μ(x) =
μ(0� � � � �0� 2

k
� � � � � 2

k
) = ∑k

i=k/2+1
2
k
i = 3

4k + 1
2 and infx∈M μ(x) = μ( 2

k
� � � � � 2

k
�0�

� � � �0) = 1
4k + 2. Moreover, these bounds are not attained because neither

(0� � � � �0� 2
k
� � � � � 2

k
) nor ( 2

k
� � � � � 2

k
�0� � � � �0) is in M . Since M is convex, for any
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t ∈ ( 1
4k+2� 3

4k+ 1
2), there exists an x ∈ M such that μ(x) = t. Similar reasoning

applies to k odd. Q.E.D.

The proof of Theorem 2 is constructive. For each x ∈ Δk� x 
 0 that satis-
fies (4), we construct x̃ = 1

a
x − 1−a

a
( 1
k
� � � � � 1

k
) for a arbitrarily close to 1. Then

x̃ ∈ Δk� x̃ 
 0 and x̃ satisfies the inequalities in (4). Then we find a z compa-
rable to x̃ and a nonnegative matrix P = (Pji)

k
j�i=1 such that for i� j = 1� � � � �k,∑k

j=1 Pji = 1
k
�
∑k

i=1 Pji = zj�
1
zj

∑j

i=1 Pji ≥ 1
2 , and 1

zj

∑k

i=j Pji ≥ 1
2 . Moreover, we

construct P so that it satisfies certain dominance relations. As in the proof
of Theorem 1, the matrix P embodies the likelihood functions f� through
fθ(Sj) = kPji for θ ∈ Θi and it yields a rationalizing model which almost ra-
tionalizes z; almost because for rationalization we would need strict inequali-
ties 1

zj

∑j

i=1 Pji >
1
2 and 1

zj

∑k

i=j Pji >
1
2 . Since z is comparable to x̃� the vector

y = az + (1 − a)( 1
k
� � � � � 1

k
) is comparable to x and is rationalized by the model

yielded by Q = aP + (1 − a) 1
k
I (where 1

yj

∑j

i=1 Qji >
1
2 and 1

yj

∑k

i=j Qji >
1
2 ).

From the dominance relations that P satisfies, the model has monotone sig-
nals.

PROOF OF THEOREM 2:
Sufficiency. For any matrix P , let Pi denote the ith column and let Pj denote

the jth row.

CLAIM 1: For any x̃ ∈ Δk� x̃ 
 0 that satisfies (4), there exists a comparable z

and a nonnegative matrix P = (Pji)
k
j�i=1 such that for i� j = 1� � � � �k,

∑k

j=1 Pji =
1
k
�
∑k

i=1 Pji = zj�
1
zj

∑j

i=1 Pji ≥ 1
2 , and 1

zj

∑k

i=j Pji ≥ 1
2 . Moreover, for all i� j, kPi+1

f.o.s.d. kPi and

k∑
r=i+1

Pjr

zj
≤

k∑
r=i+1

Pj+1�r

zj+1
(10)

with strict inequality if
∑k

r=i+1 Pj+1�r > 0�

We prove the claim for k even; the proof for k odd is similar. In Part A, we
build rows h� � � � �k of P ; in Part B, we build rows 1� � � � �h − 1; in Part C, we
verify that the matrix P satisfies the dominance relations.

Part A—k ≥ j ≥ h. Let zj = x̃j� and define Pk by Pkk = zk/2 and Pki =
zk/2(k− 1) for i = 1� � � � �k− 1�

We now build recursively Pk−1 through Ph. Whenever rows Pj+1� � � � �Pk have
been defined, define the “slack” vector sj ∈ Rk by sji = 1

k
−∑k

f=j+1 Pfi. Note that
s
j
i = s

j+1
i − Pji�
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Suppose that for every r ≥ j + 1, (i)
∑k

i=r Pri = zr
2 , (ii) for 1 ≤ i < r, Pri =

zr
2(r−1) , (iii) Pri ≥ 0 for all i and Pri is decreasing in i for i ≥ r, and (iv) sr−1

i ≥ 0
for all i, sr−1

i = sr−1
r−1 for i < r and sr−1

i decreasing in i for i ≥ r − 1. Notice that
for j = k − 1 (i)–(iv) are satisfied. We now build Pj in such a way that (i)–(iv)
are satisfied for r = j.

For i < j� set Pji = zj/2(j − 1). We turn now to i ≥ j. Let ij = max{i ≥
j : zj

2 −∑k

f=i+1 s
j
f ≤ s

j
i (i− j+ 1)}. We first establish that ij is well defined. By the

induction hypothesis, for every r ≥ j+ 1,
∑k

i=j Pri = zr
2 + zr

2(r−1) (r − j)= zr
2

2r−j−1
r−1 .

We have
k∑
i=j

s
j
i = 1

k
(k− j + 1)−

k∑
i=j

k∑
r=j+1

Pri(11)

= 1
k
(k− j + 1)−

k∑
r=j+1

k∑
i=j

Pri

= 1
k
(k− j + 1)−

k∑
r=j+1

zr

2
2r − j − 1

r − 1
>

zj

2
�

where the inequality holds since, by (4), 1
k
(k−j+1) >

∑k

r=j
zr
2

2r−j−1
f−1 . Therefore,

i = j satisfies the conditions in the definition of ij and ij is well defined. Define

Pji =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
zj

2
−

k∑
f=ij+1

s
j
f

ij − j + 1
for ij ≥ i ≥ j,

s
j
i for i > ij.

(12)

Items (i) and (ii) are satisfied by construction. We now check (iii). Clearly
Pji ≥ 0. Notice that Pji is constant in i for j ≤ i ≤ ij and decreasing in i for
i > ij since s

j
i is decreasing, so we only need to check that Pjij ≥ Pj�ij+1� But

Pjij < Pj�ij+1 would imply

zj

2
−

k∑
f=ij+1

s
j
f

ij − j + 1
< s

j
ij+1 ⇔ zj

2
−

k∑
f=ij+2

s
j
f < s

j
ij+1(ij − j + 2)�

which violates the definition of ij .
To establish (iv), we first show s

j−1
i ≥ 0 for all i� By definition of Pji, (a) sj−1

i =
0 for all i > ij� By definition of ij , Pjij ≤ s

j
ij

so that (b) sj−1
ij

≥ 0� Next, Pji = Pjij
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for ij ≥ i ≥ j and s
j
i decreasing in i establishes (c) sj−1

i ≥ s
j−1
ij

≥ 0 for ij ≥ i ≥ j�

Consider now i < j. Since j ≥ h = 1 + k/2� we obtain Pjj ≥ zj/2(k − j + 1) ≥
zj/2(j− 1)= Pji for all i < j� Then s

j
i = s

j
j for all i < j, and s

j−1
j ≥ 0 (established

in (c)) imply (d) for all i < j:

s
j−1
i = s

j−1
j−1 ≥ s

j−1
j ≥ 0 and s

j−1
i = s

j−1
j−1 > s

j−1
j ≥ 0 if j > h�(13)

Next, notice that sji = s
j
j and Pji = Pj�j−1 for all i < j establish s

j−1
i = s

j−1
j−1 for

i < j� We finally show that sj−1
i is decreasing in i for i ≥ j − 1� Equation (13)

established that s
j−1
j−1 ≥ s

j−1
j � so we only need to show that s

j−1
i ≥ s

j−1
i′ for any

i′ > i ≥ j. If Pji > Pji′ for some i′ > i ≥ j, then from (12), Pji′ = s
j

i′ and therefore
s
j−1
i′ = 0 ≤ s

j−1
i . If Pji ≤ Pji′� then since s

j
i ≥ s

j

i′�

s
j−1
i = s

j
i − Pji ≥ s

j

i′ − Pji′ = s
j−1
i′ �

This completes the proof of Part A.
We now establish a property of P that will be used in Part B. Suppose that

for some j and i ≥ j� we have Pji = 0. If Pji 	= s
j
i , (12) implies Pji′ = Pji = 0

for all j ≤ i′ ≤ ij� Also, (iii) implies that for all i′ ≥ i� Pji′ = 0� Then (i) implies
zj = 0, which is a contradiction. Therefore Pji = s

j
i = 0� From (iii) and (iv) we

obtain Pji′ = s
j

i′ = 0 for all i′ ≥ i so that sj−1
i′ = s

j

i′ − Pji′ = 0� Since s
j−2
i′ ≥ 0, we

have Pj−1�i′ = 0� Repeating the reasoning, we obtain

Pji = 0 ⇒ s
j
i = 0 ⇒ Pj′i′ = s

j′
i′ = 0 for all i′ ≥ i and all j′ ≤ j�(14)

Part B—j < h. For j ≥ h, zj = x̃j� For j < h, zj can be different from x̃j .
We proceed by defining Pj and then setting zj = ∑k

i=1 Pji� Let Ph−1�i = sh−1
i for

i ≥ h; for i ≤ h− 1, define P1
h−1�i =

∑k

g=h s
h−1
g /(h− 1).

We now show that sh−1
i − P1

h−1�i > 0 for i ≤ h − 1. We will establish sh−1
h−1 −

P1
h−1�h−1 > 0� since P1

h−1�i = P1
h−1�h−1 and sh−1

h−1 = sh−1
i for all i ≤ h−1. Phh > Ph�h+1

implies ih = h and Ph�h+1 = shh+1, which ensures sh−1
h+1 = 0� In equation (11), we

proved
∑k

i=j s
j
i >

zj

2 for all j, so from equation (12) and h= ih, we obtain

k∑
i=h

shi >
zh

2
⇔ shh >

zh

2
−

k∑
f=h+1

shf = Phh

and therefore sh−1
h = shh − Phh > 0 = sh−1

h+1� Hence Phh > Ph�h+1 implies sh−1
h >

sh−1
h+1� Also, Phh = Ph�h+1� implies sh−1

h > sh−1
h+1 because, by the strict inequality in
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(13), shh > shh+1. Since Phh ≥ Ph�h+1� we obtain sh−1
h > sh−1

h+1. Since sh−1
i is decreas-

ing in i, then

P1
h−1�i =

k∑
g=h

sh−1
g

h− 1
=

k∑
g=h

sh−1
g

k− h+ 1
< sh−1

h

for all i ≤ h − 1� and therefore sh−1
h > sh−1

h+1 ⇒ sh−1
h − P1

h−1�i > sh−1
h+1 − sh−1

h = 0 as
was to be shown.

Define P2
h−1�h−1 = sh−1

h−1 − P1
h−1�h−1 > 0 and P2

h−1�j = P2
h−1�h−1/(h− 2) for all j <

h− 1 and let Ph−1�i = P1
h−1�i + P2

h−1�i for i ≤ h− 1�
Let zh−1 = ∑k

i=1 Ph−1�i = 2
∑k

i=h s
h−1
i + 2P2

h−1�h−1. We have

h−1∑
i=1

Ph−1�i

zh−1
=

k∑
j=h

sh−1
j + 2P2

h−1�h−1

2
k∑

j=h

sh−1
j + 2P2

h−1�h−1

≥ 1
2

and

k∑
i=h−1

Ph−1�i

zh−1
=

P1
h−1�h−1 + P2

h−1�h−1 +
k∑

i=h

sh−1
i

zh−1
≥ 1

2
�

For j < h− 1� set Pji = 0 for i > j� Pjj = s
j
j and Pji = Pjj/(j− 1) for i < j, and

zj = ∑k

i=1 Pji.
Part C—Checking dominance relations. We first check inequality (10).
Case 1. Pj and Pj+1, j ≥ h�
(I) For i < j� we have

i∑
r=1

Pjr

zj
=

i
zj

2(j − 1)
zj

= i

2(j − 1)
>

i

2j
=

i
zj+1

2j
zj+1

=

i∑
r=1

Pj+1�r

zj+1
�(15)

(II) For i = j, since Pjj > Pjr = zj

2(j−1) and Pj+1�j = Pj+1�r = zj+1
2j for r < j� we

have

i∑
r=1

Pjr

zj
=

j∑
r=1

Pjr

zj
>

j
zj

2(j − 1)
zj

>
1
2

=

j∑
r=1

Pj+1�r

zj+1
=

i∑
r=1

Pj+1�r

zj+1
�(16)
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(III.a) Pick i ≥ j + 1 and suppose Pj+1�i+1 = 0. By (14), we have that for r ≥
i+ 1� Pjr = 0 and therefore

i∑
r=1

Pjr

zj
= 1 ≥

i∑
r=1

Pj+1�r

zj+1
�(17)

(III.b) Pick i ≥ j + 1 and suppose Pj+1�i+1 > 0� If i + 1 > ij+1, then Pj+1�i+1 =
s
j+1
i+1 , so that sji+1 = 0. By (14), Pjr = 0 for all r ≥ i+ 1, so that

k∑
r=i+1

Pjr

zj
= 0 <Pj+1�i+1 ≤

k∑
r=i+1

Pj+1�r

zj+1
�

If i+ 1 ≤ ij+1, then since Pjr and Pj+1�r are decreasing in r, we have the follow-
ing ordering between distributions: the distribution 2(Pj+1�j+1� � � � �Pj+1�k)/zj+1

f.o.s.d. the uniform distribution on j + 1 to ij+1; the uniform distribution from
j to ij+1 f.o.s.d. the distribution 2(Pjj� � � � �Pjk)/zj� Therefore,

2
k∑

r=i+1

Pj+1�r

zj+1
≥ ij+1 − i

ij+1 − j
>

ij+1 − i

ij+1 − j + 1
≥

2
k∑

r=i+1

Pjr

zj
�

Note that because Pj+1�i is decreasing in i for i ≥ j + 1, then
∑k

r=i+1 Pj+1�r >
0 ⇔ Pj+1�i+1 > 0. Therefore, (I), (II), (III.a), and (III.b) show that (10) holds
and that the inequality is strict if Pj+1�i+1 > 0.

Case 2. Pj and Pj+1, j = h− 1.
(I) For i < j, recall from Part B that for all i < h− 1,

Ph−1�i = P1
h−1�i + P2

h−1�i =

k∑
r=h

sh−1
r

h− 1
+ P2

h−1�h−1

h− 2
�

Then letting a = ∑k

r=h s
h−1
r and b = P2

h−1�h−1, and recalling that zh−1 = 2a+ 2b,
we have that for i < h− 1,

Ph−1�i

zh−1
=

a

h− 1
+ b

h− 2
2a+ 2b

�(18)
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Since, for i < h− 1, Phi = zh/2(h− 1) and b= P2
h−1�h−1 > 0� we have

i∑
r=1

Ph−1�r

zh−1
= i

a

h− 1
+ b

h− 2
2a+ 2b

> i

a

h− 1
+ b

h− 1
2a+ 2b

= i

2(h− 1)
=

i∑
r=1

Ph�r

zh
�

(II) For i = j,

i∑
r=1

Ph−1�r

zh−1
=

h−1∑
r=1

Ph−1�r

zh−1
= a+ 2b

2a+ 2b
>

1
2

=

h−1∑
r=1

Phr

zh
=

i∑
f=1

Phr

zh
�

(III) Fix i > j� If Pj+1�i+1 = 0� repeat step (III.a) of Case 1 to show
∑i

r=1
Pjr

zj
=

1 ≥ ∑i

r=1
Pj+1�r
zj+1

� If Pj+1�i+1 > 0� repeat step (III.b) of Case 1 to show that∑k

f=i+1 Ph−1�f /zh−1 <
∑k

f=i+1 Phr/zh for i > h− 1�
Steps (I), (II), and (III) show that (10) holds, and that the inequality is strict

if
∑k

r=i+1 Pj+1�r > 0.
Case 3. Pj and Pj+1 for j = h− 2.
(I) For i < j� recall equation (18) and that Ph−2�r/zh−2 = 1/2(h− 3) for r ≤ i�

so that

i∑
r=1

Ph−2�r

zh−2
= i

2(h− 3)
>

i

2(h− 2)
> i

a

h− 1
+ b

h− 2
2a+ 2b

=
i∑

r=1

Ph−1�r

zh−1
�

(II) For i = j�

i∑
r=1

Ph−2�r

zh−2
= 1 > 1 − Ph−1�h−1 ≥ 1 −

k∑
r=h−1

Ph−1�r

zh−1
=

i∑
r=1

Ph−1�r

zh−1
�

(III) For i > j� Ph−2�i = 0 for all i ≥ h − 1� so
∑k

r=i+1
Ph−2�r
zh−2

= 0� If∑k

r=i+1 Ph−1�r > 0, we have
∑k

r=i+1
Ph−1�r
zh−1

>
∑k

r=i+1
Ph−2�r
zh−2

�

Steps (I), (II), and (III) show that (10) holds, and that the inequality is strict
if

∑k

r=i+1 Pj+1�r > 0.
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Case 4. Pj and Pj+1 for j < h− 2. These cases are trivial, since Pgi = zg

2(g−1) for
i < g, Pgg = zg

2 , and Pgi = 0 for i > g� for g = j� j + 1�
We now check that Pi+1 f.o.s.d. Pi. Suppose i ≥ h� Since Pkk ≥ Pkc = Pkc′ for

all c� c′ < k, we have
∑k

r=j Pr�i+1 ≥ ∑k

r=j Pri for j = k. Fix then h− 1 ≤ j < k.

• If Pj′i > Pj′�i+1 for any j ≤ j′ < k� we know Pj′�i+1 = s
j′
i+1 and therefore

s
j′−1
i+1 = 0� and by (14), Pr�i+1 = 0 for all r ≤ j′ − 1� This implies

∑k

r=j Pr�i+1 ≥∑k

r=j′ Pr�i+1 = 1 ≥ ∑k

r=j Pr�i.
• If Pj′i ≤ Pj′�i+1 for all j ≤ j′ < k, since Pkk ≥ Pkc = Pkc′ for all c� c′ < k,

we have
∑k

r=j Pr�i+1 ≥ ∑k

r=j Pri�

Fix j < h− 1. Since Pji = Pj�i+1 = 0� we have 1 = ∑k

r=j Pr�i+1 ≥ ∑k

r=j Pri.
Suppose i = h − 1. For all j > h� Pjh = Pj�h−1� and for j = h, we have Phh ≥

Ph�h−1� so that for all j ≥ h,
∑k

r=j Prh ≥ ∑k

r=j Pr�h−1� Also, since Ph−1�h = sh−1
h and

Pjh = 0 for j < h− 1, we have that for all j < h�
∑k

r=j Prh = 1
k

≥ ∑k

r=j Pr�h−1�
Suppose i ≤ h − 2. For all j > i + 1� Pj�i+1 = Pji, and for j = i + 1, we have

Pj�i+1 ≥ Pji, so that for all j ≥ i + 1,
∑k

r=j Pr�i+1 ≥ ∑k

r=j Pri� Also, since Pi+1�i+1 =
si+1
i+1, we have, for all j < i+ 1�

∑k

r=j Pr�i+1 = 1
k

≥ ∑k

r=j Pri�

This establishes Claim 1.
Now take any vector x ∈ Δk�x
 0, that satisfies (4), and for the k× k iden-

tity matrix I, let J = 1
k
I and K = ( 1

k
� � � � � 1

k
)� We find a y comparable to x that

can be rationalized with monotone signals.
Let x̃ = 1

a
x − 1−a

a
K for a arbitrarily close to 1. Then x̃ ∈ Δk� x̃ 
 0, and x̃

satisfies the inequalities in (4). Find a z and P as in Claim 1.
Let y = az + (1 − a)K and Q = aP + (1 − a)J� Define the matrix A by Aj =

Qj/
∑k

i=1 Qji. Since
∑k

i=1 Pji = zj and
∑k

i=1 Jji = 1
k
� we have that

∑k

i=1 Qji = yj =
azj + (1 − a) 1

k
and Aj =Qj/yj�

Note that y is comparable to x, yA = ( 1
k
� � � � � 1

k
) and for all j,

∑k

i=1 Aji = 1.
For 1 ≤ j ≤ k,

j∑
i=1

Aji =

j∑
i=1

Qji

yj
=

j∑
i=1

(aPji + (1 − a)Jji)

azj + (1 − a)
1
k

= azj

azj + (1 − a)
1
k

j∑
1

Pji

zj
+

(1 − a)
1
k

azj + (1 − a)
1
k

j∑
1

Jji

1
k
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= azj

azj + (1 − a)
1
k

j∑
1

Pji

zj
+

(1 − a)
1
k

azj + (1 − a)
1
k

≥ azj

azj + (1 − a)
1
k

1
2

+
(1 − a)

1
k

azj + (1 − a)
1
k

>
1
2
�

Similarly,
∑k

i=j Aji > yj/2.
Given any Θ and p such that p(Θi) = 1

k
for all i� let S = {1�2� � � � �k} and

fθ(j) = kAjiyj for θ ∈ Θi, i� j = 1� � � � �k. From Step 2 in the proof of Theo-
rem 1, (Θ�S� f�p) q-rationalizes y for q = 1

2 .
We now verify that (Θ�S� f�p) satisfies m.s.p. It is immediate that fθ′ f.o.s.d.

fθ for θ′ > θ, since kPi+1 f.o.s.d. kPi for all i� We need to show that for all i� j <
k� p(

⋃i

g=1 Θg | j) ≥ p(
⋃i

g=1 Θg | j + 1), which is true if and only if
∑i

g=1 Ajg ≥∑i

r=1 Aj+1�g�

If
∑k

r=i+1 Pj+1�r = 0� we have
∑i

r=1 Pj+1�r = zj+1 and by (10),
∑i

r=1 Pjr = zj . If∑k

r=i+1 Pj+1�r = 0, we must also have i ≥ j + 1, since for i < j + 1�
∑i

r=1 Pj+1�r =
zj+1 would imply

0 =
k∑

r=i+1

Pj+1�r

zj+1
≥

k∑
r=j+1

Pj+1�r

zj+1
≥ 1

2
�

We therefore have

i∑
r=1

Ajr =
i∑

r=1

Qjr

yj
= azj

azj + (1 − a)
1
k

i∑
r=1

Pjr

zj
+

(1 − a)
1
k

azk + (1 − a)
1
k

i∑
r=1

Jjr

1
k

= azj

azj + (1 − a)
1
k

+
(1 − a)

1
k

azj + (1 − a)
1
k

= 1

= azj+1

azj+1 + (1 − a)
1
k

+
(1 − a)

1
k

azj + (1 − a)
1
k

=
i∑

r=1

Aj+1�r �
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If
∑k

r=i+1 Pj+1�r > 0, then by (10),
∑i

r=1
Pjr

zj
>

∑i

r=1
Pj+1�r
zj+1

and for a sufficiently

close to 1,
∑i

r=1 Ajr >
∑i

r=1 Aj+1�r . This completes the proof of sufficiency for
k> 4�

For k = 4, suppose that x ∈ Δ4�x 
 0 satisfies (4). Then x3 + 4
3x4 < 1. As-

sume w.l.o.g. that x3 + x4 ≥ x1 + x2, and define the matrices P and P ′:

P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

2
+ ε

x1

2
− ε 0 0

x2

2
− ε

x2

2
+ ε 0 0

x3

4
x3

4
− ε

1 − 2x1 − 2x2

4
+ 2ε

1 − 2x4

4
− ε

x4 − x1 − x2

4
x4 − x1 − x2

4
+ ε

x1 + x2

2
− 2ε

x4

2
+ ε

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
�

P ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

x1

2
+ ε

x1

2
− ε 0 0

x2

2
− ε

x2

2
+ ε 0 0

1 − 2x1 − 2x2

4
1 − 2x1 − 2x2

4
− ε

1 − 2x4

4
+ 2ε

1 − 2x4

4
− ε

0 ε
x4

2
− 2ε

x4

2
+ ε

⎞⎟⎟⎟⎟⎟⎟⎟⎠
�

Given any Θ and p such that p(Θi) = 1
4 , for all i� let S = {1�2� � � � �4}� fθ(j) =

kPji, and f ′
θ(j) = 4P ′

ji for θ ∈ Θi, i� j = 1� � � � �4. It is easily verified that
for ε arbitrarily small, (θ�S� f�p) median-rationalizes x if x4 > x1 + x2,
and (θ�S� f ′�p) median-rationalizes x if x4 ≤ x1 + x2. Furthermore, both
(θ�S� f�p) and (θ�S� f ′�p) satisfy m.s.p.

Necessity. Suppose that x can be median-rationalized with a model (Θ� S̃�
f̃ �p) with monotone signals. We show that equation (4) holds; the argument
for (5) is symmetric.

Let S = {1� � � � �k} and fθ(j) = ∫
S̃j
df̃θ(s). Then (Θ�S� f�p) is a model with

monotone signals which also median-rationalizes x. Let P be the k× k matrix
defined by

Pji =
∫
Θi

fθ(j)dp(θ)= F(j |Θi)p(Θi)�

To show necessity, we first establish three facts about P and (Θ�S� f�p). As
in the proof of necessity of Theorem 1, for q = 1

2 we have that (i) for all j
such that xj > 0� p(

⋃k

i=j Θi | j) > 1
2 . Also, since (Θ�S� f�p) rationalizes x, xj =

F(Sj) = F(j) and, therefore, (ii) for all i and all j such that xj > 0� p(Θi | j) =
F(j|Θi)

F(j)
p(Θi)= Pji

xj
�
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Since (Θ�S� f�p) satisfies m.s.p.,
∑k

n=j fθ(n) ≥ ∑k

n=j fθ′(n) for θ ∈ Θi−1 and
θ′ ∈ Θi′ , i′ ≤ i− 1. We have

L≡ inf
θ∈Θi−1

k∑
n=j

fθ(n)≥ sup
θ′∈Θi′

k∑
n=j

fθ′(n)≡U

so that for all j and all i� i′ with i′ ≤ i− 1,

k∑
n=j

Pni′ =
k∑

n=j

∫
Θi′

fθ′(n)dp(θ′)

=
∫
Θi′

k∑
n=j

fθ′(n)dp(θ′)≤
∫
Θi′

U dp(θ′)

≤
∫
Θi′

Ldp(θ′) =
∫
Θi−1

Ldp(θ)

≤
∫
Θi−1

k∑
n=j

fθ(n)dp(θ)=
k∑

n=j

Pn�i−1�

Therefore, (iii) for all j and all i� i′ with i′ ≤ i− 1�
∑k

n=j Pni′ ≤ ∑k

n=j Pn�i−1.
Let ĵ be the largest j for which xj > 0. For i > ĵ, inequality (4) holds trivially.

Let

Ci =
k∑

g=i

k∑
j=i

Pjg� Pj(i)=
k∑

m=i

Pjm� and Fi(j)=
k∑

m=j

Pmi�(19)

Since Ci ≤ ∑k

g=i

∑k

j=1 Pjg = k−i+1
k

, it suffices to show that

Ci >

k∑
j=i

xj

2
2j − i− 1
j − 1

(20)

for i ≤ ĵ. We proceed inductively. From (i) and (ii),

Cĵ =
k∑
i=ĵ

Pĵi =
k∑
i=ĵ

p(Θi | ĵ)xĵ >
xĵ

2
=

k∑
j=ĵ

xj

2
2j − ĵ − 1

j − 1
�

which establishes (20) for i = ĵ.
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Suppose that (20) holds for i = t ≤ ĵ� If xt−1 = 0, then Pt−1�g = 0 for all g, and
Pt−1(t − 1)= 0 = xt−1

2 . If xt−1 > 0� from (i) and (ii) we have

1
2
< p

(
k⋃

m=t−1

Θm

∣∣∣ t − 1

)
=

k∑
m=t−1

p(Θm | t − 1)

=
k∑

m=t−1

Pt−1�m

xt−1
= Pt−1(t − 1)

xt−1
�

Hence, Pt−1(t − 1)≥ xt−1
2 � From (iii), for all i′ ≤ t − 1� we have Ft−1(t)≥ Fi′(t)

and therefore Ft−1(t) ≥ ∑t−1
i′=1

Fi′ (t)
t−1 . Also, since

∑k

i=1 Pji = ∑k

i=1 p(Θi | j)xj =
xj , we have

Ct−1 = Ft−1(t)+ Pt−1(t − 1)+Ct

≥

k∑
i′=t

xi′ −Ct

t − 1
+ Pt−1(t − 1)+Ct

=

k∑
i′=t

xi′

t − 1
+ Pt−1(t − 1)+Ct

t − 2
t − 1

≥

k∑
i′=t

xi′

t − 1
+ xt−1

2
+Ct

t − 2
t − 1

>

k∑
i′=t

xi′

t − 1
+ xt−1

2
+

(
k∑

i′=t

xi′

2
2i′ − t − 1

i′ − 1

)
t − 2
t − 1

= xt−1

2
+

k∑
i′=t

xi′

2
2i′ − t

i′ − 1
=

k∑
i′=t−1

xi′

2
2i′ − t

i′ − 1

so that (20) holds for t − 1 as well. Hence, (20) holds for 1� � � � � ĵ. Q.E.D.
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