
Banco de México
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entre la mayoŕıa de los mercados. Los resultados indican además el importante papel que
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Introduction

In recent years, we have been witness to dramatic increases in both the level and

volatility (�uctuations) of international agricultural prices (Gilbert 2010). This has

raised concern about unexpected price spikes as a major threat to food security,

especially in less developed countries where food makes up a high proportion of

household spending. The unprecedented price spikes in agricultural commodities

during the 2007-2008 food crisis, coupled with shortages and diminishing agricul-

tural stocks, resulted in reduced access to food for millions of poor people in a

large number of low income, net food-importing countries. The recent escalation

of several agricultural prices, particularly corn and wheat, and the prevailing high

price volatility have all reinforced global fears about volatile food prices. Attention

has turned, then, to further examining food price volatility in global markets.

It is fairly well established that traders in exchange markets, including hedgers

and speculators, base their decisions on information generated domestically but

also on information from other markets (Koutmos and Booth 1995). In the case

of agricultural exchanges, the important development of futures markets in recent

decades, combined with the major informational role played by futures prices,

have in fact contributed to the increasing interdependence of global agricultural

markets.1 Identifying the ways in which international futures markets interact

is consequently crucial to properly understanding price volatility in agricultural

commodity markets. Moreover, potential regulatory arrangements of agricultural

futures markets, which are currently being debated within the European Union

(EU), United States, and The Group of Twenty (G-20), can be properly evalu-

ated when linkages and interactions across exchanges are taken into account. The

e�ectiveness of any proposed regulatory mechanism will depend on the level and

1 As a reference, the average daily volume of corn futures traded in the Chicago Board of
Trade (CBOT) has increased by more than 250% in the last 25 years (Commodity Research
Bureau, Futures database).
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forms of interrelation between markets. Moreover, the issue of interdependence and

volatility transmission across international markets is of interest for international

traders, investors and portfolio managers, allowing them to carry out hedging and

trading strategies more successfully.

This study evaluates the level of interdependence and volatility transmission

in major agricultural exchanges between the United States (Chicago, Kansas),

Europe (France, United Kingdom), and Asia (China, Japan). In particular, we

examine the dynamics and cross-dynamics of volatility across futures markets for

three key agricultural commodities: corn, wheat, and soybeans. The period of

analysis is 2004-2009 for corn and soybeans and 2005-2009 for wheat. We follow

a multivariate GARCH (hereafter MGARCH) approach that allows us to evalu-

ate whether there is volatility transmission across exchanges, the magnitude and

source of interdependence (direct or indirect) between markets, and ultimately

how a shock or innovation in a market a�ects volatility in other markets. In par-

ticular, we estimate the following MGARCH models: diagonal T-BEKK, full T-

BEKK, CCC, and DCC models.2 While the diagonal BEKK speci�cation identi�es

own-volatility spillovers and persistence within markets, the full BEKK model is

suitable to characterize volatility transmission across exchanges since it is �exible

enough to account for own- and cross-volatility spillovers and persistence between

markets. The CCC model, in turn, evaluates the degree of interdependence be-

tween markets, measured through a constant conditional correlation matrix, while

the DCC permits to examine if the degree of interdependence has changed across

time.

The paper contributes to the literature in several aspects. First, it provides an

in-depth analysis of volatility transmission across several important exchanges

2 The diagonal and full BEKK models stand for Engle and Kroner (1995) multivariate models;
the acronym BEKK comes from synthesized work on multivariate models by Baba, Engle, Kraft,
and Kroner, while T indicates that we use a T-student density in the estimations (for reasons that
will become clear later). The CCC model is Bollerslev (1990) Constant Conditional Correlation
model, while the DCC model is Engle (2002) Dynamic Conditional Correlation model.
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of di�erent agricultural commodities. Most of the previous research including

Spriggs, Kaylen, and Bessler (1982), Gilmour and Fawcett (1987), Goodwin and

Schroeder (1991) and Mohanty, Peterson, and Kruse (2005) have either examined

price volatility of agricultural commodities under a univariate approach or have

focused on the interdependence and interaction of agricultural futures markets in

terms of the conditional �rst moments of the distribution of returns.3 We explore

futures markets interactions in terms of the conditional second moment under a

multivariate approach, which provides better insight into the dynamic price rela-

tionship of international markets by incorporating volatility spillovers.4 Inferences

about the magnitude and persistence of the shocks that originate in one market

and that transmit to the other markets are shown to depend importantly on how

we model the cross-market dynamics in the conditional volatilities of the corre-

sponding markets (Gallagher and Twomey 1998). In addition, with a multivariate

model we can capture the feedback interrelationships among the volatilities across

markets; this is important since it is widely accepted that �nancial volatilities

move together over time across markets.

Second, and contrary to previous related studies, we account for the potential

bias that may arise when considering agricultural exchanges with di�erent closing

times. We synchronize our data by exploiting information from markets that are

open to derive estimates for prices when markets are closed. Third, our sample

period allows us to examine if there have been changes in the dynamics of volatility

due to the recent food price crisis of 2007-2008, a period of special interest with

unprecedent price variations. Finally, we apply di�erent MGARCH speci�cations

3 Two exceptions are Yang, Zhang, and Leatham (2003) and von Ledebur and Schmitz (2009).
The former examine volatility transmission in wheat between the United States, Canada and
Europe using a BEKK model; the latter examine volatility transmission in corn between the
United States, Europe and Brazil using a restrictive speci�cation.

4 Our study is more in line with Karolyi (1995), Koutmos and Booth (1995), and Worthing-
ton and Higgs (2004), who examine volatility transmission in stock markets using multivariate
models. Other markets which also have been investigated include Eurodollar futures (Tse, Lee,
and Booth 1996) and foreign exchange (Engle, Ito, and Lin 1990).
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to analyze in detail the cross-market dynamics in the conditional volatilities of the

exchanges.

The estimation results indicate that there is a strong correlation among inter-

national markets. We �nd both own- and cross-volatility spillovers and dependence

between most of the exchanges considered in the analysis. There is also a higher

interaction between Chicago and both Europe and Asia than within the latter.

The results further indicate the major role of Chicago in terms of spillover e�ects

over the other markets, particularly for corn and wheat. In the case of soybeans,

both China and Japan also show important cross-volatility spillovers. In addition,

the level of interdependence between exchanges has not necessarily shown an up-

ward trend in recent years for all commodities. From a policy perspective, the

results suggest that if agricultural futures markets are decided to be regulated,

the regulation needs to be coordinated across borders (exchanges); localized regu-

lation of markets will have limited e�ects given the high level of interdependence

and volatility transmission across exchanges.

The remainder of the paper is organized as follows. The next section presents

the econometric approach used to examine volatility transmission among major

agricultural exchanges. The subsequent section describes the data and how we

address the problem of asynchronous trading hours among the markets considered

in the analysis. The estimation results are reported and discussed next, while the

concluding remarks are presented at the end.

Model

To examine interdependence and volatility transmission across futures markets of

agricultural commodities, di�erent MGARCH models are estimated. The estima-

tion of several models responds to the di�erent questions we want to address and

4



serves to better evaluate the cross-market dynamics in the conditional volatilities

of the exchanges using di�erent speci�cations.

Following Bauwens, Laurent, and Rombouts (2006), we can distinguish three

non-mutually exclusive approaches for constructing MGARCH models: i) direct

generalizations of the univariate GARCH model (e.g. diagonal and full BEKK

models, factor models), ii) linear combinations of univariate GARCH models (e.g.

O-GARCH), and iii) nonlinear combinations of univariate GARCH models (e.g.

CCC and DCCmodels, copula-GARCHmodels).5 Given the objective of our study,

we apply the �rst and the third approach in the analysis. In particular, we estimate

the diagonal T-BEKK, full T-BEKK, CCC, and DCC models.6

The crucial aspect in MGARCH modeling is to provide a realistic but parsimo-

nious speci�cation of the conditional variance matrix, ensuring that it is positive

de�nite. There is a dilemma between �exibility and parsimony. Full BEKK mod-

els, for example, are �exible but require too many parameters for more than four

series. Diagonal BEKK models are much more parsimonious but very restrictive

for the cross-dynamics; they are not suitable if volatility transmission is the sole

object of the study. CCC models allow to separately specify the individual condi-

tional variances and the conditional correlation matrix of the series, but assume

constant conditional correlations. DCC models allow, in turn, for both a dynamic

conditional correlation matrix and di�erent persistence between variances and co-

variances, but impose common persistence in the covariances.

The MGARCH models employed in this paper cannot distinguish between

idiosyncratic and aggregate shocks. To identify aggregate shocks, it would be

neccesary to estimate a factor GARCH model that captures the commonality

in volatility clustering across di�erent random variables. However, these models

5 O-GARCH is the orthogonal MGARCH. Examples of copula-GARCH models include Patton
(2000) and Lee and Long (2009).

6 Both factor models and linear combinations of univariate GARCH models require a large
number of univariate processes for the estimation. Copula-GARCH models, in turn, have basi-
cally been applied for bivariate cases.
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are intended to analyze the conditional volatilities for a large number of series,

which makes them less suitable for this study.7

Consider the following model,

(1) yt = µt(θ) + εt, εt|It−1 ∼ (0, Ht)

where {yt} is an N × 1 vector stochastic process of returns, with N being the

number of exchanges considered for each of the three agricultural commodities to

be studied (corn, wheat, and soybeans), θ is a �nite vector of parameters, µt(θ) is

the conditional mean vector, and εt is a vector of forecast errors of the best linear

predictor of yt conditional on past information denoted by It−1. The conditional

mean vector µt(θ) can be speci�ed as a vector of constants plus a function of past

information, through a VAR representation for the level of the returns.

For the BEKK model with one time lag, the conditional variance matrix is

de�ned as

(2) Ht =C ′C + A′εt−1ε
′
t−1A+B′Ht−1B

where cij are elements of an N ×N upper triangular matrix of constants C, the

elements aij of the N ×N matrix A measure the degree of innovation from market

i to market j, and the elements bij of the N ×N matrix B show the persistence in

conditional volatility between markets i and j. This speci�cation guarantees, by

construction, that the covariance matrices are positive de�nite. A diagonal BEKK

model further assumes that A and B are diagonal matrices.

7 Factor GARCH models provide a parsimonious parametrization of the covariance matrix,
thus reducing the number of parameters to be estimated. The motivation for these models is
commonality in the conditional variance movements. The notion of a factor model typically
encompasses the idea that there are a relatively small number of common underlying variables,
whereas the alternative (generalized) orthogonal models of van der Weide (2002) and Vrontos,
Dellaportas, and Politis (2003) usually do not have a reduced number of principal components.
Consequently, (generalized) orthogonal models are rather restrictive for �nancial data in that
they do not allow for idiosyncratic shocks.
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The conditional variance matrix Ht speci�ed in expression (2) allows us to ex-

amine in detail the direction, magnitude and persistence of volatility transmission

across markets. For instance, based on this speci�cation, we are able below to

derive impulse-response functions to illustrate the e�ects of innovations originated

in one market and transmitted to the rest of the markets under analysis.

For the CCC model, the conditional variance matrix is de�ned as

(3) Ht =DtRDt = (ρij
√
hiithjjt)

where

(4) Dt = diag(h
1/2
11t ...h

1/2
NNt),

(5) hiit = ωi + αiε
2
i,t−1 + βihii,t−1,

i.e., hiit is de�ned as a GARCH(1,1) speci�cation, i= 1, ..., N , and

(6) R= (ρij)

is a symmetric positive de�nite matrix that contains the constant conditional

correlations, with ρii = 1 ∀i.

The speci�cation of Ht in expression (3) is appropriate to estimate the degree

of interdependence between markets. In particular, the constant conditional cor-

relation matrix R sheds light on how markets are interrelated in the long run. An

alternative approach involves introducing a time-dependent conditional correlation

matrix. The DCC model is de�ned in such a way that

(7) Ht =DtRtDt
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with Dt de�ned as in (4), hiit de�ned as in (5), and

(8) Rt = diag(q
−1/2
ii,t )Qtdiag(q

−1/2
ii,t )

with the N ×N symmetric positive-de�nite matrix Qt = (qij,t) given by

(9) Qt = (1− α− β)Q̄+ αut−1u
′
t−1 + βQt−1,

and uit = εit/
√
hiit. Q̄ is the N ×N unconditional variance matrix of ut, and α and

β are non-negative scalar parameters satisfying α + β < 1. The typical element of

Rt will have the form ρij,t =
qij,t√
qii,tqjj,t

.

Data

We have daily data on closing prices for futures contracts of corn, wheat, and

soybeans traded on di�erent major exchanges across the world, including Chicago

(CBOT), Kansas (KCBT), Dalian-China (DCE), France (MATIF), United King-

dom (LIFFE), Japan (TGE), and Zhengzhou-China (ZCE). The United States,

EU, and China are major players in global agricultural markets and trade while

Japan is a major importer, and the exchanges considered are basically the leading

agricultural futures markets in terms of volume traded. China is a special case

considering that it is both a major global producer and consumer of agricultural

products, but at the same time it is a locally oriented and highly regulated market.

The data was obtained from the futures database of the Commodity Research

Bureau (CRB). Table 1 details the speci�c exchanges and commodities for which

we have data, as well as their starting sample period, price quotation, and contract

unit. The �nal date in our sample is June 30, 2009.

As documented by Protopapadakis and Stoll (1983), the interactions between

international commodity markets may be investigated in its purest form using com-
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modity futures prices instead of spot prices. Similarly, Yang, Bessler, and Leatham

(2001) indicate that futures prices may play a better informational role than cash

prices in aggregating market information, particularly for commodities traded in

international markets. Garbade and Silver (1983), Crain and Lee (1996), and Her-

nandez and Torero (2010) also provide empirical evidence that spot prices move

toward futures prices in agricultural markets by examining lead-lag relationships

between them.

Provided that futures contracts with di�erent maturities are traded every day

on di�erent exchanges, the data is compiled using prices from the nearby contract,

as in Crain and Lee (1996). The nearby contract is generally the most liquid

contract. In addition, it is widely accepted that nearby contracts are the most

active and that more information is contained in these contracts (Booth and Ciner

1997).

To avoid registering prices during the settlement month or expiration date, the

nearby contract to be considered is the one whose delivery period is at least one

month ahead. Due to di�erent holidays across exchanges, for example, we only

include in the estimations those days for which we have available information for

all exchanges.

The analysis consists of separately examining market interdependence and

volatility transmission across three di�erent exchanges per commodity. In the

case of corn, we examine the dynamics and cross-dynamics of volatility be-

tween the United States (CBOT), Europe/France (MATIF), and China (Dalian-

DCE); for wheat, between the United States, Europe/London (LIFFE), and China

(Zhengzhou-ZCE); for soybeans, between the United States, China (DCE), and

Japan (Tokyo-TGE).8 The starting date is chosen according to the exchange with

the shortest data period available for each agricultural commodity. Since the con-

8 We �nd very similar results when considering the Kansas City Board of Trade (KCBT)
instead of CBOT for wheat. Further details are available upon request.
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tract units and price quotations vary by market, all prices are standardized to US

dollars per metric ton (MT).9 This allows us to account for the potential impact

of the exchange rate on the futures returns.

The daily return at time t is calculated as yt = log(St/St−1), where St is the

closing futures price in US dollars at time t. Table 2 presents descriptive statistics

of the returns series considered, multiplied by 100, for each of the three agri-

cultural commodities. Sample means, medians, maximums, minimums, standard

deviations, skewness, kurtosis, the Jarque-Bera statistic, and the corresponding

p-value are presented. CBOT exhibits, on average, the highest return across mar-

kets for all agricultural commodities and the highest standard deviation for corn

and wheat.

The distributional properties of the returns appear to be non-normal in all

the series. As indicated by the p-value of the Jarque-Bera statistic, we reject the

null hypothesis that the returns are well approximated by a normal distribution.

The kurtosis in all markets exceeds three, indicating a leptokurtic distribution.

Given these results, we use a T-student density (instead of a normal density)

for the estimation of the BEKK models. The procedure for parameter estimation

involves the maximization of a likelihood function constructed under the auxiliary

assumption of an i.i.d. distribution for the standardized innovations. For details on

the T-student density estimation for MGARCH models, see Fiorentini, Sentana,

and Calzolari (2003).

Table 2 also presents the sample autocorrelation functions for the returns and

squared-returns series up to two lags and the Ljung-Box (LB) statistics up to 6 and

12 lags. The LB statistics for the raw returns series reject the null hypothesis of

white noise in some cases, while the LB statistics for the squared returns reject the

null hypothesis in most cases. The autocorrelation for the squared daily returns

suggests evidence of nonlinear dependency in the returns series, possibly due to

9 The data for exchange rates were obtained from the Federal Reserve Bank of St. Louis.
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time varying conditional volatility. Evidence of the importance of volatility in

agricultural commodities is documented in Hudson and Coble (1999) and Goodwin

and Schnepf (2000).

Figure 1, in turn, shows the daily returns in each of the three exchanges consid-

ered for each commodity. The �gure indicates time-varying conditional volatility

in the returns. The �gure also provides some evidence of cross-market in�uences

across exchanges. These results motivate the use of MGARCH models to capture

the dependencies in the �rst and second moments of the returns within and across

exchanges.

The Asynchronous Problem

Given that the exchanges considered in the analysis have di�erent trading hours,

potential bias may arise from using asynchronous data. In particular, nonsyn-

chronous trading can introduce spurious lagged spillovers even when markets are

independent. To address this issue, we follow Burns, Engle, and Mezrich (1998)

and Engle and Rangel (2009) and compute estimates for the prices when markets

are closed, conditional on information from markets that are open. We synchro-

nize the data before proceeding to estimate the models described in the previous

section.

Figure 2 illustrates the problem of using asynchronous data. Consider, for ex-

ample, that we want to synchronize the returns of corn futures in France (MATIF)

with the returns in Chicago (CBOT), which closes later. The synchronized return

in France can be de�ned as

(10) yfs,t = yfu,t − ξf,t−1 + ξf,t

where yfu,t is the observed, unsynchronized return in France at t and ξf,t is the

return that we would have observed from the closing time of France at t to the
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closing time of Chicago at t. Following Burns, Engle, and Mezrich (1998), we

estimate the unobserved component using the linear projection of the observed

unsynchronized return on the information set that includes all returns known at

the time of synchronization.

First, we express the asynchronous multivariate GARCH model as a �rst order

vector moving average, VMA(1), with a GARCH covariance matrix

(11) yt = νt +Mνt−1, Vt−1(νt) =Hν,t

where M is the moving average matrix and νt is the unpredictable component of

the returns, i.e., Et(yt+1) =Mνt.

Next, we de�ne the unsynchronized returns as the change in the log of unsyn-

chronized prices, yt = log(St)− log(St−1), whereas the synchronized returns are

de�ned as the change in the log of synchronized prices, ŷt = log(Ŝt)− log(Ŝt−1).

The expected price at t+ 1 is also an unbiased estimator of the synchronized price

at t, provided that further changes in synchronized prices are unpredictable, i.e.,

log(Ŝt) =E(log(St+1)|It). Thus, the synchronized returns are given by

ŷt =Et(log(St+1))− Et−1(log(St))

=Et(yt+1)− Et−1(yt) + log(St)− log(St−1)

=Mνt −Mνt−1 + yt

= νt +Mνt.(12)
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Finally, the synchronized vector of returns and its covariance matrix can be

estimated as

ŷt = (I + M̂)νt,

Vt−1(ŷt) = (I + M̂)Ĥν,t(I + M̂)′(13)

where I is the N ×N identity matrix and M̂ contains the estimated coe�cients

of the VMA(1) model.

We estimate M based on a vector autoregressive approximation of order p,

VAR(p), following Galbraith, Ullah, and Zinde-Walsh (2002). The estimator is

shown to have a lower bias when the roots of the characteristic equation are

su�ciently distant from the unit circle, and it declines exponentially with p. Since

we work with returns data, the choice of a modest order for the VAR provides a

relatively good approximation of M.

In particular, M is estimated as follows. The VMA(1) is represented as the

following in�nite-order VAR process

(14) yt =
∞∑
j=1

Bjyt−j + νt

where the coe�cients of the matrices Bj are given by

B1 =M1,

Bj =−Bj−1M1, for j = 2, ....(15)

By applying a VAR approximation, we can obtain the VMA coe�cients from

those of the VAR. We �t the VAR(p) model with p > 1 by least squares. From the

p estimated coe�cient matrices of dimension N ×N of the VAR representation

13



yt =B1yt−1 + ...+Bpyt−p + νt, we estimate the moving average coe�cient matrix

of dimension N ×N by the relation M̂1 = B̂1 based on (15).

The results from the synchronized daily returns are �nally compared with those

from the (unsynchronized) weekly returns to select p.10 For di�erent p values,

we compare the contemporaneous and one-lag correlations (among exchanges) of

the synchronized daily returns with the correlations obtained when using weekly

returns. We �nd similar results for p= 2 through p= 5. For parsimony, we select

p= 2.

Table 3 shows the contemporaneous correlation across exchanges for each com-

modity.11 We report the correlations for asynchronous, weekly, and synchronized

returns. Daily correlations seem to be smaller when markets are highly asyn-

chronous.

A better measure of the unconditional correlation can be obtained from weekly

returns. As noted above, such data are less a�ected by the timing of the markets

since the degree of asynchronicity is lower. In general, weekly correlations are larger

than daily correlations, and the synchronized returns correlations are closer to the

weekly correlations than the unsynchronized returns correlations. For example, the

correlation between CBOT and TGE is 0.127 for daily data, 0.455 for weekly data

and 0.384 when using the synchronized data.12 These results suggest, then, that the

synchronization method appears to solve the problem introduced by asynchronous

trading. This allows us to fully exploit all the information contained in our data

to analyze volatility dynamics across markets in the short run.13

10 Weekly returns are used as a measure to correct unconditional correlation between markets.
Such data are relatively una�ected by the timing of the markets since the degree of asynchronicity
is much lower (Burns, Engle, and Mezrich 1998).

11 One-lag correlations are available upon request.
12 The descriptive statistics of the synchronized returns are similar to those of the unsyn-

chronized returns. To save space, we only report the summary statistics of the unsynchronized
returns.

13 We also use daily return data, instead of lower frequency data such as weekly and monthly
returns, because longer horizon returns can obscure temporary responses to innovations, which
may last for a few days only (Elyasiani, Perera, and Puri 1998).
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Results

This section presents the estimation results of the MGARCH speci�cations applied

to examine volatility transmission in agricultural exchanges. These include the di-

agonal T-BEKK, full T-BEKK, CCC, and DCC models. Examining volatility as

the second moment provides further insight into the dynamic price relationship be-

tween markets. As noted above, we estimate T-BEKK models instead of standard

BEKK models because the normality of all the returns in our sample is rejected

at the 95% signi�cance level and the kurtosis is greater than three in all cases.

Table 4 reports the estimated coe�cients and standard errors of the conditional

variance covariance matrix for the diagonal T-BEKK model. The aii coe�cients,

i= 1, ..., 3, quantify own-volatility spillovers (i.e. the e�ect of lagged own innova-

tions on the current conditional return volatility in market i). The bii coe�cients

measure own-volatility persistence (i.e. the dependence of the conditional volatil-

ity in market i on its own past volatility). The results indicate that own-volatility

spillovers and persistence are statistically signi�cant across most of the markets

considered for each agricultural commodity. Own innovation shocks appear to have

a much higher e�ect in China than in the other exchanges. This market, however,

also exhibits the lowest volatility persistence; in the case of Zhengzhou (wheat),

it is not signi�cant at the conventional levels. This could be explained by the

fact that China is a regulated market where own information shocks could have

a relatively important (short-term) e�ect on the return volatility, but where past

volatility does not necessarily explain current volatility (as in other exchanges)

due to market interventions. Contrary to China, exchanges in the United States,

Europe and Japan derive relatively more of their volatility persistence from within

the domestic market.14

14 We later examine how sensitive our estimation results are when we exclude China from the
analysis.
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From the results, we can also infer that there are interactions, at least indi-

rect via the covariance, between exchanges.15 In the case of corn and soybeans,

the conditional covariance between any pair of markets shows persistence and is

a�ected by information shocks that occur in one or both markets. In the case of

wheat, only the conditional covariance between Chicago and LIFFE shows persis-

tence and may vary with innovations in one of the markets; the covariance between

China (ZCE) and Chicago and China and LIFFE does not show persistence.

Our results di�er, for example, from the results of von Ledebur and Schmitz

(2009) who apply a diagonal BEKK model to analyze market interrelations be-

tween the United States (CBOT), France (MATIF) and Brazil for corn during

2007-2008. They �nd that the conditional covariance between CBOT and MATIF

(and between CBOT and Brazil) is not a�ected by information shocks that could

occur in one or both markets. They link this result to a partial decoupling of the

U.S. market from the other markets due to a politically induced market devel-

opment and a tight supply situation during the period of analysis. von Ledebur

and Schmitz, however, do not account for the non-normality of some of the series

analyzed (they use a diagonal BEKK instead of a diagonal T-BEKK model), and

for the di�erence in trading hours between exchanges, which could be a�ecting

the magnitude and signi�cance of their results.

We now turn to the full T-BEKK model, which can provide further insights

into the dynamics of direct volatility transmission across exchanges. Contrary to

the diagonal T-BEKK, this model does not assume that A and B are diagonal

matrices in equation (2), allowing for both own- and cross-volatility spillovers

and own- and cross-volatility dependence between markets. Table 5 presents the

estimation results using this model. The o�-diagonal coe�cients of matrix A, aij,

capture the e�ects of lagged innovations originating in market i on the conditional

15 See Appendix A for further details on the conditional variance and covariance equations
for the di�erent MGARCH models.
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return volatility in market j in the current period. The o�-diagonal coe�cients

of matrix B, bij, measure the dependence of the conditional volatility in market

j on that of market i. The Wald tests, reported at the bottom of Table 5, reject

the null hypothesis that the o�-diagonal coe�cients, aij and bij, are jointly zero

at conventional signi�cance levels.

Several patterns emerge from the table. First, the own-volatility spillovers

and persistence in all markets are very similar to those found with the diagonal

T-BEKK model. These own e�ects are generally large (and statistically signi�-

cant) pointing towards the presence of strong GARCH e�ects. Second, the cross-

volatility e�ects, although smaller in magnitude than the own e�ects, indicate that

there are spillover e�ects of information shocks and volatility persistence between

the exchanges analyzed. In the case of information shocks, past innovations in

Chicago have a larger e�ect on the current observed volatility in European and

Chinese corn and wheat markets than the converse, which points towards the ma-

jor role CBOT plays in terms of cross-volatility spillovers for these commodities.

For soybeans, the major role of Chicago is less clear. There is a relatively large

spillover e�ect from CBOT to China (DCE), but the e�ect from DCE to CBOT

is also important; Japan similarly shows a large spillover e�ect (especially over

China). Yet, in terms of cross-volatility persistence, there is a relatively important

dependence of the observed volatility in the Chinese soybeans market on the past

volatility in CBOT.

The results with this model di�er from those of Yang, Zhang, and Leatham

(2003) who also use a full BEKK model to examine volatility transmission in

wheat between the United States (CBOT), Europe (LIFFE) and Canada for the

period 1996-2002. The authors �nd that the U.S. market is a�ected by volatility

from Europe (and Canada), while the European market is highly exogenous and

little a�ected by the U.S. and Canadian markets. However, they recognize that

the exogeneity and in�uence of the European market could be overestimated due
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to the time zone di�erence of futures trading between Europe and North America.

We precisely �nd a major role of CBOT in terms of volatility transmission when

controling for di�erences in trading hours across exchanges.

Despite the increase in the production of corn-based ethanol in recent years

as well as the many regulations and trade policies governing agricultural products

(like temporary export taxes and import bans), it is interesting that CBOT still

has a leading role over other futures exchanges, including China's closed, highly

regulated market. This result con�rms the importance of Chicago in global agri-

cultural markets. The fact that China has spillover e�ects over other exchanges

(at least in soybeans) is also remarkable, and is probably because China is both

a major global producer and consumer of agricultural products. Thus, any exoge-

nous shock in this market may also a�ect the decision-making process in other

international markets.

Our results support the "meteor shower hypothesis" of Engle, Ito, and Lin

(1990). According to this theory, foreign market news follow a process like a meteor

shower hitting the earth as it revolves. The impact of this process is manifested in

the form of volatility spillovers from one market to the next. This is in contrast to

the alternative "heat waves hypothesis", where volatility has only country-speci�c

autocorrelation such that a volatile day in one market is likely to be followed by

another volatile day in the same market, but not typically a volatile day in other

markets.

Table 6 shows the results for the CCC model. In this speci�cation, the level of

interdependence across markets is captured by the correlation coe�cients ρij. The

results show that the correlations between exchanges are positive and statistically

signi�cant at the 1% level for the three agricultural commodities, which implies

that markets are interrelated. In general, we observe that the interaction between

the United States (CBOT) and the rest of the markets (Europe and Asia) is higher

compared with the interaction within the latter. In particular, the results show
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that the interaction between CBOT and the European markets is the highest

among the exchanges for corn and wheat. The results also indicate that China's

wheat market is barely connected with the other markets, while in the case of

soybeans, China has a higher association with CBOT than Japan, similar to the

�ndings with the full T-BEKK model.

Even though the CCC model does not allow us to identify the source of volatil-

ity transmission, it helps us to address whether there is interaction among markets,

as well as the magnitude of interdependence. The DCC model, in turn, generalizes

the CCC model, allowing the conditional correlations to be time varying. Table 7

presents the estimation results for the DCC model. Parameters α and β can be

interpreted as the �news� and �decay� parameters. These values show the e�ect of

innovations on the conditional correlations over time, as well as their persistence.

For the three commodities, the estimated �news� parameters are small (α< 0.01);

only for corn α is statistically signi�cant at the 5% level. For corn and wheat, the

estimated parameters show a slow �decay� (β > 0.98) and are signi�cant at the 1%

level. In the case of soybeans, there is no persistence (β ≈ 0) nor signi�cance.

Figure 3 shows the dynamic conditional correlations (ρij,t) estimated with the

DCCmodel. For corn, we observe high variability in the correlation between CBOT

and MATIF (ranging from 0.20 to 0.55), with peak values after the 2007-2008 cri-

sis. It is also clear that the three estimated conditional correlations among corn

exchanges have shown an upward trend in recent years. The same high variabil-

ity and upward trend is observed in wheat when looking at the dynamics of the

conditional correlation between Chicago and Europe (LIFFE). The other two cor-

relations among wheat exchanges (CBOT-ZCE and LIFFE-ZCE), in contrast, do

not show an upward trend, although they (moderately) increased during the re-

cent crisis. For soybeans, the three dynamic conditional correlations are rather

constant, coinciding with the unconditional correlations estimated with the CCC.
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This is also deduced from the estimated values of both α and β, which are close

to zero in the case of soybeans.

It is worth noting that the residual diagnostic statistics, reported at the bottom

of Tables 4-7, generally support adequacy of the model speci�cations considered.

In particular, the Ljung-Box (LB) statistics, up to 6 and 12 lags, show in most

cases no evidence of autocorrelation in the standardized residuals of the estimated

models at a 5% level.

Considering that markets in China are highly regulated (and locally oriented),

we also evaluate the robustness of our �ndings when excluding the corresponding

Chinese exchanges (Dalian and Zhengzhou). In the case of corn, we both restrict

the analysis to Chicago and MATIF and consider Japan (TGE) instead of Dalian;

for wheat and soybeans, we just restrict the analysis to Chicago and LIFFE and

Chicago and TGE. The estimation results are reported in Tables B.1-B.4 and Fig-

ure B.1 in Appendix B. Overall, the results are qualitatively similar to our base

results, suggesting that our �ndings are not sensitive to the inclusion or exclusion

of China. We still observe a high correlation between exchanges, particularly be-

tween Chicago and both Europe and Japan, as well as higher spillover e�ects from

Chicago to the other markets than the converse. Similarly, only corn and wheat

exchanges exhibit an increasing level of interdependence in recent years.

There are several reasons why the returns and volatility in the agricultural

exchanges may be related. Since the economies are related through trade and in-

vestments, any news about economic fundamentals in one country has implications

for the other countries. Moreover, the degree of correlation between the exchanges

may increase as a result of the growing �nancial market integrations, brought

about by the relatively free �ow of goods and services and capital as well as the

revolution technology. Another possible reason for the international correlation is

market contagion. That is, the future price in one country might be a�ected by

changes in another country by connections though economic fundamentals. Under
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this contagion scenario, speculative trading as well as noise trading can occur in

international markets (Long et al. 1990), such that price movements driven by

fads and herd instinct might transmit across borders.

Volatility Transmission Across Time

Next, we examine whether the dynamics of volatility transmission between futures

markets has changed across time, particularly after the recent food price crisis of

2007-2008 with unprecedent price variations. To divide our working sample into

a period pre-crisis and a period post-crisis, we apply the test for the presence of

structural breaks proposed by Lavielle and Moulines (2000). Compared to other

tests for structural breaks, the test developed by Lavielle and Moulines is more

suitable for stronlgy dependent processes such as GARCH processes (Carrasco and

Chen 2002).

Similar to Benavides and Capistrán (2009), we apply the test over the square

of the synchronized returns, as a proxy for volatility. Table B.5 in Appendix B

reports the break dates identi�ed for each of the series of interest.16 Most of the

breaks are during the �rst semester of 2008, period where the food crisis was felt

most severely. Based on these break dates, we then divide the whole sample for

each commodity into two di�erent subsamples as follows: September 23rd 2004

until February 26th 2008 and June 30th 2008 until June 30th 2009 for corn; May

10th 2005 until June 22nd 2007 and November 5th 2008 until June 30th 2009 for

wheat; and January 5th 2004 until February 26th 2008 and August 1st 2008 until

June 30th 2009 for soybeans.

Tables 8 and 9 present the estimation results of the full T-BEKK model for

the periods pre- and post-crisis, based on the structural breaks identi�ed above

16 The test of Lavielle and Moulines searches for multiple breaks over a maximum number of
pre-de�ned possible segments, and uses a minimum penalized contrast to identify the number of
breaking points. We allowed for two and three segments as the maximum number of segments
and 50 as the minimum length of each segment, obtaining similar results.
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for each commodity. Overall, the pattern of own- and cross-volatility dynamics

among the futures markets analyzed does not appear to have changed consid-

erably when comparing the period before the food price crisis with the period

after the crisis. Similar to the full-sample estimations, we generally observe large

and statistically signi�cant own-volatility spillovers and persistence suggesting the

presence of strong GARCH e�ects. The only important variation when comparing

the two periods is the much stronger own-volatility persistence exhibited by wheat

exchanges after the crisis.

The cross-volatility e�ects, in turn, are jointly statistically signi�cant in both

periods, supporting the presence of cross spillovers of innovation shocks and cross-

volatility persistence between the exchanges. In general, the magnitudes of the

cross e�ects are relatively smaller than the own e�ects in most markets, similar to

our base results. The Wald tests, however, further indicate that the cross e�ects

are remarkably stronger for corn and weaker for wheat in the period post-crisis,

relative to the period pre-crisis; for soybeans, the degree of transmission does

not appear to have changed between periods. This pattern closely resembles the

dynamic conditional correlations across markets estimated with the DCC model

for each commodity (see Figure 3). The results also con�rm the leading role of

Chicago in terms of volatility transmission over the other markets in recent years.

Impulse-Response Analysis

In this subsection, we perform an impulse-response analysis to approximate the

simulated response of exchanges, in terms of their conditional volatility, to in-

novations separately originating in each market. This exercise is based on the

estimation results of the full T-BEKK model (reported in Table 5) and provides

a clearer picture about volatility spillovers across exchanges.
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Impulse-response functions are derived by iterating, for each element hii result-

ing from expression (2), the response to a 1%-innovation in the own conditional

volatility of the market where the innovation �rst occurs.17 The responses are nor-

malized by the size of the original shock to account for di�erences in the initial

conditional volatilities across exchanges.

Figure 4 presents the impulse-response functions for the three commodities

as a result of innovations originated in each of the markets analyzed. For corn

and soybeans, the plots show the impulse-response coe�cients up to 100 days

after the initial shock. For wheat, the plots show the responses up to 200 days,

given the high persistence observed in these markets (especially from responses to

innovations arising in Chicago).

Consistent with the results shown above, the impulse-response functions con-

�rm that there are important cross-volatility spillovers across markets and that

Chicago plays a leading role in that respect, particularly for corn and wheat. The

case of soybeans is interesting since a shock originated in CBOT, equivalent to 1%

of its own conditional volatility, results in a higher (almost double) initial increase

in China's own conditional volatility. Yet, a shock in China also has an important

(although minor) e�ect on Chicago, while an innovation in Japan has a compa-

rable e�ect on China. Another interesting pattern that emerges from the �gure

is the lack of persistence in the impulse-response functions corresponding to the

Chinese markets: the adjustment process is very fast after an own or cross inno-

vation. This is consistent with the fact that these markets are regulated, which

provides further support to the robustness of our results.

17 It is worth mentioning that the estimated residuals from the full T-BEKK model are gen-
erally uncorrelated across exchanges for each commodity, reason why we center the analysis on
volatility spillover e�ects from innovations separately originating in each market.
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Concluding Remarks

This paper has examined the dynamics and cross-dynamics of volatility across

major agricultural exchanges in the United States, Europe, and Asia. We focus

on three key agricultural commodities: corn, wheat, and soybeans. We analyze

futures markets interactions in terms of the conditional second moment under a

multivariate GARCH approach, which provides better insight into the dynamic

interrelation between markets. We further account for the potential bias that may

arise when considering agricultural exchanges with di�erent closing times.

The estimation results indicate that the agricultural markets analyzed are

highly interrelated. There are both own- and cross-volatility spillovers and de-

pendence between most of the exchanges. We also �nd a higher interaction be-

tween the United States (Chicago) and both Europe and Asia than within the

latter. Furthermore, Chicago plays a major role in terms of spillover e�ects over

the other markets, especially for corn and wheat. China and Japan also show

important cross-volatility spillovers for soybeans. Additionally, the degree of in-

terdependence across exchanges has not necessarily increased in recent years for

all commodities.

The leading role of Chicago over other international markets is interesting

despite speci�c regulations and trade policies governing agricultural products, es-

pecially in closed, highly regulated markets like China. This result con�rms the

importance of the United States in global agricultural markets. The fact that China

has spillover e�ects over other exchanges is similarly remarkable. The results fur-

ther suggest that there has not been any decoupling of the U.S. corn market from

other markets after the ethanol boom of 2006.

Besides providing an in-depth analysis on futures markets' interrelations, this

study intends to contribute to the ongoing debate on alternative measures to ad-

dress excessive price volatility in agricultural markets, which include the potential
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regulation of futures exchanges. The results obtained suggest that if futures mar-

kets are decided to be regulated, any potential regulatory scheme on these markets

should be coordinated across exchanges; for example, through a global indepen-

dent unit. Any local regulatory mechanism will have limited e�ects given that

the exchanges are highly interrelated and there are important volatility spillovers

across markets.

To conclude, it is important to stress out that the analysis above has focused

on the volatility dynamics across markets in the short-run. Similarly, we have not

accounted for potential asymmetries that may exist in the volatility transmission

process. Future research could examine long-term dynamics in volatility transmis-

sion across exchanges, which could provide further insights about the mechanisms

governing the interdependencies between agricultural markets. Likewise, asymme-

tries in volatility transmission could be incorporated into the analysis. Certainly,

good news in a market may produce a di�erent e�ect on another market than bad

news, which could bring additional information to further understand agricultural

market interrelations and help in any policy design.
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Appendix A. Conditional Covariance in MGARCH

Models

In the BEKK model with one time lag and three markets (N = 3), the condi-

tional covariance matrix Ht de�ned in equation (2) can be expanded as follows,

Ht =


c11 0 0

c12 c22 0

c13 c23 c33



c11 c12 c13

0 c22 c23

0 0 c33



+


a11 a21 a31

a12 a22 a32

a13 a23 a33




ε21,t−1 ε1,t−1ε2,t−1 ε1,t−1ε3,t−1

ε2,t−1ε1,t−1 ε22,t−1 ε2,t−1ε3,t−1

ε3,t−1ε1,t−1 ε3,t−1ε2,t−1 ε23,t−1



a11 a12 a13

a21 a22 a23

a31 a32 a33



+


b11 b21 b31

b12 b22 b32

b13 b23 b33



h11,t−1 h12,t−1 h13,t−1

h21,t−1 h22,t−1 h23,t−1

h31,t−1 h32,t−1 h33,t−1



b11 b12 b13

b21 b22 b23

b31 b32 b33

 .(A.1)

The resulting variance equation for market 1, for example, is equal to

h11,t = c211 + a211ε
2
1,t−1 + 2a11a21ε1,t−1ε2,t−1 + a221ε

2
2,t−1

+ 2a11a31ε1,t−1ε3,t−1 + a231ε
2
3,t−1 + 2a21a31ε2,t−1ε3,t−1

+ b211h11,t−1 + 2b11b21h12,t−1 + b221h22,t−1

+ 2b11b31h13,t−1 + b231h33,t−1 + 2b21b31h23,t−1.(A.2)

The covariance equation for markets 1 and 2, in turn, is equal to

h12,t = c11c12 + a11a12ε
2
1,t−1 + a21a22ε

2
2,t−1 + a31a32ε

2
3,t−1

+ (a11a22 + a21a12)ε1,t−1ε2,t−1 + (a11a32 + a31a12)ε1,t−1ε3,t−1

+ (a21a32 + a31a22)ε2,t−1ε3,t−1 + b11b12h11,t−1

+ b21b22h22,t−1 + b31b32h33,t−1 + (b11b22 + b21b12)h12,t−1

+ (b11b32 + b31b12)h13,t−1 + (b21b32 + b31b22)h23,t−1.(A.3)
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In the case of the diagonal BEKK model, where A and B are diagonal matrices,

the variance equation for market 1 is given by

(A.4) h11,t = c211 + a211ε
2
1,t−1 + b211h11,t−1

while the covariance equation for markets 1 and 2 is equal to

(A.5) h12,t = c11c12 + a11a22ε1,t−1ε2,t−1 + b11b22h12,t−1.

The conditional covariance matrix Ht for the CCC model de�ned in equation

(3), also with one time lag and N = 3, can be characterized as follows,

Ht =


h
1/2
11,t 0 0

0 h
1/2
22,t 0

0 0 h
1/2
33,t




1 ρ12 ρ13

ρ12 1 ρ23

ρ13 ρ23 1



h
1/2
11,t 0 0

0 h
1/2
22,t 0

0 0 h
1/2
33,t

(A.6)

where hii,t is de�ned as a GARCH(1, 1) speci�cation, i= 1, ..., 3, and ρij represents

the conditional correlation between markets i and j. The variance equation for

market 1 is equal to

(A.7) h11,t = ω1 + α1ε
2
1,t−1 + β1h11,t−1,

while the covariance equation for markets 1 and 2 is given by

(A.8) h12,t = [(ω1 + α1ε
2
1,t−1 + β1h11,t−1)(ω2 + α2ε

2
2,t−1 + β2h22,t−1)]1/2ρ12.
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Similarly, the corresponding conditional covariance matrix Ht for the DCC

model de�ned in equation (7) is equal to

Ht =


(

h11,t

q11,t

)1/2
0 0

0
(

h22,t

q22,t

)1/2
0

0 0
(

h33,t

q33,t

)1/2
Qt

×


(

h11,t

q11,t

)1/2
0 0

0
(

h22,t

q22,t

)1/2
0

0 0
(

h33,t

q33,t

)1/2
(A.9)

where

Qt = (1− α− β)


q11 q12 q13

q21 q22 q23

q31 q32 q33

+ α


u21,t−1 u1,t−1u2,t−1 u1,t−1u3,t−1

u2,t−1u1,t−1 u22,t−1 u2,t−1u3,t−1

u3,t−1u1,t−1 u3,t−1u2,t−1 u23,t−1



+ β


q11,t−1 q12,t−1 q13,t−1

q21,t−1 q22,t−1 q23,t−1

q31,t−1 q32,t−1 q33,t−1

 .

The variance equations in the DCC model, hii,t, i= 1, ..., 3, are equal to the vari-

ance equations in the CCC model, while the covariance equation for markets 1

and 2, for example, is given by

(A.10) h12,t = q12,t

(
h11,th22,t
q11,tq22,t

)1/2

where

q12,t = (1− α− β)q̄12 + αu2,t−1u1,t−1 + βq12,t−1,

q11,t = (1− α− β)q̄11 + αu21,t−1 + βq11,t−1,

q22,t = (1− α− β)q̄22 + αu22,t−1 + βq22,t−1,

u1,t−1 = ε1,t−1 (h11,t−1)
−1/2

,

u2,t−1 = ε2,t−1 (h22,t−1)
−1/2

.
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Corn

Wheat

Soybeans

Figure 1. Daily returns

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London;
ZCE=China-Zhengzhou; TGE=Japan-Tokyo.
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t1 t

GMT

Period

24:00 24:00 24:00

DCE
(local time) 9:00 15:00

MATIF
(local time)

10:45 18:30

CBOT
(local time)

9:30 13:15

15:00

10:45 18:30

9:30 13:15

9:00
Return DCE

Return MATIF

Return CBOT

ξf,tξf,t1

ξd,t1 ξd,t

ydu,t

yfu,t

ycu,t

Figure 2. Asynchronous trading hours

Note: This �gure illustrates the problem of asynchronous trading hours in Chicago (CBOT), France (MATIF)
and China (Dalian-DCE). The �gures shows the opening and closing (local) times in each market, the
asynchronous observed returns (y), and the unobserved missing fractions (ξ) with respect to the last market to
close (CBOT).
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Corn

Wheat

Soybeans

Figure 3. Dynamic conditional correlations (DCC model)

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London;
ZCE=China-Zhengzhou; TGE=Japan-Tokyo.
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Corn

Wheat

Soybeans

Figure 4. Impulse-response functions, Full T-Bekk model

Note: The responses are the result of a 1%-innovation in the own conditional volatility of the market where the
innovation �rst occurs. The responses are normalized by the size of the original shock. CBOT=Chicago;
MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China-Zhengzhou;
TGE=Japan-Tokyo.
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Table 1. Data

Corn

Exchange Product, Symbol Starting Date Price Quotation Contract Unit

CBOT Corn No.2 yellow, C 01/03/1994 Cents/bushel 5,000 bushels
MATIF Corn, MC 05/09/2003 Euros/tonne 50 tonnes
DCE Corn, XV 09/22/2004 Yuan/MT 10 MT
TGE Corn No.3, CV 08/16/1994 Yen/MT 50 MT

Wheat

Exchange Product, Symbol Starting Date Price Quotation Contract Unit

CBOT Wheat No.2 soft, W 01/03/1994 Cents/bushel 5,000 bushels
LIFFE Wheat EC, FW 08/06/1991 Pounds/tonne 100 tonnes
ZCE Winter Wheat, WR 05/09/2005 Yuan/MT 10 MT

Soybeans

Exchange Product, Symbol Starting Date Price Quotation Contract Unit

CBOT Soybeans No.1 yellow, S 01/03/1994 Cents/bushel 5,000 bushels
DCE Soybeans No.1, XT 01/02/2004 Yuan/MT 10 MT
TGE Soybeans, GT 05/18/2000 Yen/MT 10 MT

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London;
ZCE=China-Zhengzhou; TGE=Japan-Tokyo. Units of measure: 5,000 bushels of corn=127 MT (metric ton);
5,000 bushels of wheat (soybeans)=136 MT; 1000kg=1 MT; 1 tonne=1 MT.
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Table 2. Summary Statistics for Daily Returns

Corn Wheat Soybeans

CBOT MATIF DCE CBOT LIFFE ZCE CBOT DCE TGE

Mean 0.042 0.041 0.031 0.035 0.011 0.020 0.039 0.008 -0.010
Median 0.000 0.050 0.004 0.000 -0.025 0.000 0.126 0.029 0.067
Maximum 9.801 8.498 8.627 8.794 6.026 14.518 6.445 5.244 10.267
Minimum -8.076 -8.607 -3.353 -9.973 -10.602 -4.609 -10.530 -9.455 -14.985
Std. Dev. 2.117 1.477 0.869 2.372 1.610 1.259 1.892 1.172 2.388
Skewness 0.129 -0.140 2.610 -0.087 -0.235 3.298 -0.422 -0.776 -0.475
Kurtosis 4.775 7.017 24.597 4.401 5.939 36.146 4.989 10.212 7.125
Jarque-Bera 148.5 748.4 22790.7 80.0 355.5 45829.7 239.3 2788.7 918.5
p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
# observations 1108 1108 1108 963 963 963 1230 1230 1230

Returns correlations

Rho(lag=1) 0.009 0.072* 0.031 -0.021 0.027 -0.100 -0.016 0.097* 0.194*
Rho(lag=2) -0.003 -0.040 -0.068 -0.026 0.016 -0.019 -0.006 0.101* 0.088*
LB(6) 2.642 15.194* 14.154* 5.893 7.498 13.262* 9.173 52.793* 57.499*
LB(12) 7.510 21.593* 16.212 10.268 21.490* 18.595 15.248 54.895* 64.516*

Squared returns correlations

Rho(lag=1) 0.141* 0.100* 0.050 0.208* 0.134* 0.042 0.059* 0.184* 0.349*
Rho(lag=2) 0.070 0.102* 0.075* 0.159* 0.132* -0.004 0.104* 0.146* 0.235*
LB(6) 55.936* 66.598* 11.112 124.940* 78.749* 2.189 115.250* 130.970* 344.260*
LB(12) 85.268* 136.390 11.847 166.510* 121.160* 3.069 221.730* 148.400* 390.390*

Note: The symbol (*) denotes rejection of the null hypothesis at the 5% signi�cance level. Rho is the autocorre-
lation coe�cient. LB stands for the Ljung-Box statistic. CBOT=Chicago; MATIF=France-Paris; DCE=China-
Dalian; LIFFE=United Kingdom-London; ZCE=China-Zhengzhou; TGE=Japan-Tokyo.
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Table 3. Correlations for Asynchronous, Synchronized and Weekly Re-
turns

Corn

Asynchronous Weekly Synchronized

CBOT MATIF DCE CBOT MATIF DCE CBOT MATIF DCE

CBOT 1.000 0.359 0.168 1.000 0.421 0.212 1.000 0.444 0.255
MATIF 1.000 0.166 1.000 0.251 1.000 0.184
DCE 1.000 1.000 1.000

Wheat

Asynchronous Weekly Synchronized

CBOT LIFFE ZCE CBOT LIFFE ZCE CBOT LIFFE ZCE

CBOT 1.000 0.451 0.075 1.000 0.569 0.081 1.000 0.537 0.093
LIFFE 1.000 0.073 1.000 0.059 1.000 0.101
ZCE 1.000 1.000 1.000

Soybeans

Asynchronous Weekly Synchronized

CBOT DCE TGE CBOT DCE TGE CBOT DCE TGE

CBOT 1.000 0.228 0.127 1.000 0.500 0.455 1.000 0.565 0.384
DCE 1.000 0.258 1.000 0.349 1.000 0.248
TGE 1.000 1.000 1.000

Note: The correlations reported are the Pearson correlations. CBOT=Chicago; MATIF=France-Paris;
DCE=China-Dalian; LIFFE=United Kingdom-London; ZCE=China-Zhengzhou; TGE=Japan-Tokyo.
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Table 4. Diagonal T-BEKK Model Estimation Results

Coe�cient Corn Wheat Soybeans

CBOT MATIF DCE CBOT LIFFE ZCE CBOT DCE TGE
(i=1) (i=2) (i=3) (i=1) (i=2) (i=3) (i=1) (i=2) (i=3)

ci1 0.335 0.044 0.339 0.217 0.052 0.261 0.342 0.458 0.174
(0.050) (0.014) (0.060) (0.054) (0.022) (0.120) (0.048) (0.052) (0.033)

ci2 0.125 0.212 -0.115 -0.608 -0.085 -0.343
(0.024) (0.076) (0.032) (0.239) (0.066) (0.071)

ci3 0.000 0.000 0.000
(0.000) (0.026) (0.000)

ai1 0.192 0.159 0.188
(0.033) (0.020) (0.020)

ai2 0.206 0.233 0.397
(0.022) (0.022) (0.045)

ai3 0.633 0.513 0.203
(0.088) (0.085) (0.032)

bi1 0.976 0.987 0.966
(0.000) (0.000) (0.000)

bi2 0.980 0.977 0.828
(0.000) (0.000) (0.032)

bi3 0.636 -0.395 0.971
(0.065) (0.377) (0.010)

Test for standardized squared residuals (H0: no autocorrelation)

LB(6) 3.782 6.070 0.960 25.658 15.021 0.329 8.086 0.831 2.183
p-value 0.706 0.416 0.987 0.000 0.020 0.999 0.232 0.991 0.902

LB(12) 4.712 10.927 2.698 29.326 19.909 0.638 14.783 1.558 2.787
p-value 0.967 0.535 0.997 0.004 0.069 1.000 0.254 1.000 0.997

Log likelihood -5,183.2 -4,873.0 -6,723.6
# observations 1,105 960 1,227

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London;
ZCE=China-Zhengzhou; TGE=Japan-Tokyo. Standard errors reported in parentheses. LB stands for the
Ljung-Box statistic.
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Table 5. Full T-BEKK Model Estimation Results

Coe�cient Corn Wheat Soybeans

CBOT MATIF DCE CBOT LIFFE ZCE CBOT DCE TGE
(i=1) (i=2) (i=3) (i=1) (i=2) (i=3) (i=1) (i=2) (i=3)

ci1 0.377 -0.036 0.085 0.040 -0.119 -0.333 -0.001 0.115 0.140
(0.107) (0.163) (0.542) (0.245) (0.048) (1.029) (0.026) (0.421) (0.525)

ci2 -0.037 -0.070 0.036 0.360 0.430 0.079
(0.083) (0.860) (0.238) (0.640) (0.152) (0.104)

ci3 0.367 0.410 0.229
(0.269) (1.149) (0.305)

ai1 0.156 -0.018 0.041 0.135 0.043 0.055 0.129 0.198 0.073
(0.048) (0.028) (0.035) (0.048) (0.026) (0.042) (0.042) (0.084) (0.079)

ai2 0.091 0.204 -0.025 0.081 0.199 -0.125 -0.182 0.232 -0.194
(0.067) (0.030) (0.041) (0.183) (0.068) (0.068) (0.070) (0.121) (0.126)

ai3 0.098 0.065 0.638 -0.072 -0.066 0.526 0.026 -0.033 0.206
(0.071) (0.166) (0.092) (0.104) (0.108) (0.086) (0.021) (0.021) (0.048)

bi1 0.971 0.011 0.004 0.995 0.001 0.004 0.918 0.047 -0.055
(0.014) (0.009) (0.043) (0.008) (0.003) (0.031) (0.025) (0.025) (0.044)

bi2 -0.003 0.983 0.029 -0.017 0.976 0.037 0.186 0.759 0.088
(0.013) (0.012) (0.023) (0.041) (0.014) (0.033) (0.062) (0.066) (0.095)

bi3 0.009 -0.086 0.608 -0.058 -0.066 -0.398 0.005 0.003 0.979
(0.032) (0.111) (0.072) (0.254) (0.334) (0.402) (0.007) (0.009) (0.013)

Wald joint test for cross-correlation coe�cients (H0: aij = bij = 0, ∀i 6= j)

Chi-sq 31.600 63.060 40.479
p-value 0.002 0.000 0.000

Test for standardized squared residuals (H0: no autocorrelation)

LB(6) 3.944 6.993 0.738 18.210 12.542 0.322 6.566 0.118 2.127
p-value 0.684 0.321 0.994 0.006 0.051 0.999 0.363 1.000 0.908

LB(12) 4.713 12.102 2.392 24.531 16.045 0.617 9.898 0.768 2.806
p-value 0.967 0.438 0.999 0.017 0.189 1.000 0.625 1.000 0.997

Log likelihood -5,169.3 -4,857.0 -6,696.7
# observations 1,105 960 1,227

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London;
ZCE=China-Zhengzhou; TGE=Japan-Tokyo. Standard errors reported in parentheses. LB stands for the
Ljung-Box statistic.
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Table 6. CCC Model Estimation Results

Coe�cient Corn Wheat Soybeans

CBOT MATIF DCE CBOT LIFFE ZCE CBOT DCE TGE
(i=1) (i=2) (i=3) (i=1) (i=2) (i=3) (i=1) (i=2) (i=3)

ωi 0.636 0.027 0.183 0.355 0.046 0.972 0.037 0.303 0.440
(0.580) (0.017) (0.051) (0.220) (0.031) (0.249) (0.019) (0.111) (0.774)

αi 0.126 0.127 0.620 0.100 0.146 0.265 0.056 0.166 0.087
(0.062) (0.051) (0.210) (0.028) (0.047) (0.109) (0.011) (0.048) (0.084)

βi 0.740 0.873 0.372 0.833 0.851 0.000 0.933 0.646 0.853
(0.175) (0.045) (0.082) (0.061) (0.047) (0.159) (0.013) (0.080) (0.187)

ρi1 1.000 0.392 0.261 1.000 0.496 0.078 1.000 0.558 0.412
(0.031) (0.044) (0.026) (0.032) (0.036) (0.030)

ρi2 1.000 0.175 1.000 0.097 1.000 0.274
(0.032) (0.036) (0.035)

ρi3 1.000 1.000 1.000

Test for standardized squared residuals (H0: no autocorrelation)

LB(6) 3.958 1.512 1.362 4.375 7.917 0.300 3.764 0.268 1.273
p-value 0.682 0.959 0.968 0.626 0.244 0.999 0.709 1.000 0.973

LB(12) 4.716 6.171 3.187 10.395 15.672 0.645 7.172 0.854 1.911
p-value 0.967 0.907 0.994 0.581 0.207 1.000 0.846 1.000 1.000

Log likelihood -5,464.2 -5,153.9 -6,911.6
# observations 1,105 960 1,227

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London;
ZCE=China-Zhengzhou; TGE=Japan-Tokyo. Standard errors reported in parentheses. LB stands for the
Ljung-Box statistic.
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Table 7. DCC Model Estimation Results

Coe�cient Corn Wheat Soybeans

CBOT MATIF DCE CBOT LIFFE ZCE CBOT DCE TGE
(i=1) (i=2) (i=3) (i=1) (i=2) (i=3) (i=1) (i=2) (i=3)

ωi 0.636 0.027 0.183 0.355 0.046 0.972 0.037 0.303 0.440
(0.578) (0.017) (0.051) (0.216) (0.031) (0.246) (0.019) (0.106) (0.771)

αi 0.126 0.127 0.620 0.100 0.146 0.265 0.056 0.166 0.087
(0.062) (0.051) (0.210) (0.027) (0.047) (0.108) (0.010) (0.048) (0.083)

βi 0.740 0.873 0.372 0.833 0.851 0.000 0.933 0.646 0.853
(0.175) (0.045) (0.082) (0.060) (0.047) (0.095) (0.013) (0.079) (0.186)

α 0.006 0.010 0.000
(0.003) (0.009) (0.013)

β 0.989 0.982 0.000
(0.007) (0.021) (2.155)

Test for standardized squared residuals (H0: no autocorrelation)

LB(6) 3.555 1.892 1.464 4.488 6.485 0.294 3.748 0.268 1.273
p-value 0.737 0.929 0.962 0.611 0.371 1.000 0.711 1.000 0.973

LB(12) 4.270 6.244 3.287 9.542 13.893 0.652 7.170 0.856 1.912
p-value 0.978 0.903 0.993 0.656 0.308 1.000 0.846 1.000 1.000

Log likelihood -5,454.3 -5,144.3 -6,911.6
# observations 1,105 960 1,227

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London;
ZCE=China-Zhengzhou; TGE=Japan-Tokyo. Standard errors reported in parentheses. LB stands for the
Ljung-Box statistic.

43



Table 8. Full T-BEKK Model Estimation Results, Before the Food Cri-
sis

Coe�cient Corn Wheat Soybeans

CBOT MATIF DCE CBOT LIFFE ZCE CBOT DCE TGE
(i=1) (i=2) (i=3) (i=1) (i=2) (i=3) (i=1) (i=2) (i=3)

ci1 0.735 0.170 0.294 0.343 -0.052 -0.615 0.160 -0.194 0.932
(0.254) (0.094) (0.098) (0.283) (0.141) (0.200) (0.144) (0.473) (1.298)

ci2 -0.001 -0.003 0.119 0.066 0.303 0.667
(0.040) (0.014) (0.100) (1.063) (0.619) (1.362)

ci3 0.000 0.052 -0.001
(0.033) (1.342) (0.061)

ai1 -0.216 -0.036 -0.058 -0.044 -0.023 0.060 0.033 0.263 -0.124
(0.057) (0.053) (0.066) (0.092) (0.045) (0.042) (0.060) (0.182) (0.117)

ai2 -0.149 0.099 -0.079 0.063 0.245 0.003 0.028 -0.171 0.045
(0.152) (0.051) (0.040) (0.255) (0.092) (0.108) (0.231) (0.182) (0.282)

ai3 -0.101 0.089 0.546 -0.076 -0.114 0.575 0.090 0.005 0.468
(0.155) (0.099) (0.251) (0.200) (0.068) (0.114) (0.112) (0.055) (0.144)

bi1 0.864 -0.052 -0.057 -0.473 0.363 -0.032 0.922 0.020 -0.002
(0.030) (0.020) (0.020) (0.485) (0.230) (0.042) (0.089) (0.126) (0.179)

bi2 0.095 1.005 0.020 1.819 0.520 0.110 0.220 0.852 0.203
(0.071) (0.010) (0.017) (0.225) (0.509) (0.059) (0.170) (0.376) (0.280)

bi3 0.254 -0.061 0.792 0.522 -0.087 -0.032 -0.051 -0.002 0.729
(0.140) (0.066) (0.159) (0.307) (0.097) (0.190) (0.113) (0.052) (0.163)

Wald joint test for cross-correlation coe�cients (H0: aij = bij = 0, ∀i 6= j)

Chi-sq 70.535 278.888 133.794
p-value 0.000 0.000 0.000

Test for standardized squared residuals (H0: no autocorrelation)

LB(6) 1.540 5.987 1.667 3.735 5.051 0.794 2.242 0.353 1.229
p-value 0.957 0.425 0.948 0.712 0.537 0.992 0.896 0.999 0.976

LB(12) 1.810 8.182 2.612 9.019 11.013 2.432 5.671 1.285 2.483
p-value 1.000 0.771 0.998 0.701 0.528 0.998 0.932 1.000 0.998

Log likelihood -3,475.7 -1,184.4 -4,665.4
# observations 789 491 926

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London;
ZCE=China-Zhengzhou; TGE=Japan-Tokyo. Standard errors reported in parentheses. LB stands for the
Ljung-Box statistic. Before the crisis corresponds to 09/23/2004�02/26/2008 for corn, 05/10/2005�06/22/2007
for wheat, and 01/05/2004�02/26/2008 for soybeans.
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Table 9. Full T-BEKK Model Estimation Results, After the Food Crisis

Coe�cient Corn Wheat Soybeans

CBOT MATIF DCE CBOT LIFFE ZCE CBOT DCE TGE
(i=1) (i=2) (i=3) (i=1) (i=2) (i=3) (i=1) (i=2) (i=3)

ci1 0.605 1.121 -0.278 1.325 0.758 0.057 0.960 0.371 -0.778
(0.406) (0.345) (0.080) (0.608) (0.510) (0.316) (0.412) (0.173) (0.500)

ci2 -0.085 0.003 0.030 -0.096 0.000 0.000
(0.347) (0.032) (0.346) (0.346) (0.000) (0.000)

ci3 0.000 0.000 0.000
(0.095) (0.742) (0.000)

ai1 0.225 0.305 -0.091 0.133 0.037 -0.057 -0.210 -0.011 -0.215
(0.144) (0.131) (0.052) (0.247) (0.187) (0.091) (0.134) (0.081) (0.177)

ai2 -0.098 -0.420 0.100 -0.348 -0.055 0.002 0.342 0.331 0.495
(0.169) (0.160) (0.054) (0.217) (0.122) (0.113) (0.151) (0.133) (0.169)

ai3 0.130 -0.131 0.748 0.226 -0.081 0.483 -0.147 -0.157 0.443
(0.212) (0.121) (0.156) (0.289) (0.295) (0.134) (0.081) (0.090) (0.135)

bi1 0.791 -0.146 -0.086 0.703 -0.165 -0.018 0.796 -0.099 0.450
(0.044) (0.050) (0.020) (0.251) (0.135) (0.127) (0.213) (0.092) (0.159)

bi2 0.180 0.924 0.166 0.093 1.038 -0.005 -0.229 0.846 -0.231
(0.098) (0.104) (0.030) (0.227) (0.124) (0.017) (0.113) (0.113) (0.234)

bi3 0.528 0.455 0.517 0.132 0.197 0.906 0.105 0.101 0.761
(0.240) (0.202) (0.107) (0.227) (0.179) (0.119) (0.085) (0.033) (0.092)

Wald joint test for cross-correlation coe�cients (H0: aij = bij = 0, ∀i 6= j)

Chi-sq 341.026 39.221 110.368
p-value 0.000 0.000 0.000

Test for standardized squared residuals (H0: no autocorrelation)

LB(6) 4.150 2.792 4.148 3.050 7.081 4.655 7.079 15.238 4.435
p-value 0.656 0.835 0.657 0.803 0.314 0.589 0.314 0.019 0.618

LB(12) 14.804 5.819 7.172 7.800 17.658 12.630 9.456 19.936 6.059
p-value 0.252 0.925 0.846 0.801 0.127 0.397 0.664 0.068 0.913

Log likelihood -1,254.9 -289.0 -73.9
# observations 232 147 198

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London;
ZCE=China-Zhengzhou; TGE=Japan-Tokyo. Standard errors reported in parentheses. LB stands for the
Ljung-Box statistic. After the crisis corresponds to 06/30/2008�06/30/2009 for corn, 11/05/2008�06/30/2009
for wheat, and 08/01/2008�06/30/2009 for soybeans.
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Appendix B. Supplementary Results (Only for

Review)

Corn

Wheat

Soybeans

Figure B.1. Dynamic conditional correlations, Excluding China (DCC
model)

Note: CBOT=Chicago; MATIF=France-Paris; LIFFE=United Kingdom-London; TGE=Japan-Tokyo.

46



Table B.1. Diagonal T-BEKK Model Estimation Results, Excluding
China

Coe�cient Corn Corn with TGE Wheat Soybeans

CBOT MATIF CBOT MATIF TGE CBOT LIFFE CBOT TGE
(i=1) (i=2) (i=1) (i=2) (i=3) (i=1) (i=2) (i=1) (i=2)

ci1 0.339 0.042 0.373 0.049 0.142 0.209 0.053 0.187 0.209
(0.089) (0.017) (0.081) (0.014) (0.026) (0.059) (0.024) (0.040) (0.239)

ci2 0.105 0.123 0.038 0.114 0.368
(0.024) (0.026) (0.026) (0.036) (0.196)

ci3 - - 0.079 - - - -
(0.126)

ai1 0.265 0.198 0.167 0.202
(0.044) (0.028) (0.020) (0.028)

ai2 0.216 0.215 0.234 0.255
(0.022) (0.028) (0.028) (0.112)

ai3 - - 0.124 - - - -
(0.026)

bi1 0.955 0.966 0.982 0.975
(0.014) (0.010) (0.000) (0.000)

bi2 0.974 0.973 0.970 0.954
(0.000) (0.000) (0.010) (0.047)

bi3 - - 0.989 - - - -
(0.000)

Test for standardized squared residuals (H0: no autocorrelation)

LB(6) 3.522 5.793 1.558 2.776 7.111 15.251 11.545 3.080 1.461
p-value 0.741 0.447 0.956 0.836 0.311 0.018 0.073 0.799 0.962

LB(12) 6.670 11.567 3.301 7.450 9.238 18.503 17.873 7.002 2.560
p-value 0.879 0.481 0.993 0.827 0.683 0.101 0.120 0.858 0.998

Log likelihood -4,097.1 -6,140.8 -3,691.6 -5,130.2
# observations 1,105 1,115 960 1,227

Note: CBOT=Chicago; MATIF=France-Paris; LIFFE=United Kingdom-London; TGE=Japan-Tokyo. The sym-
bol (-) stands for not applicable. Standard errors reported in parentheses. LB stands for the Ljung-Box statistic.
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Table B.2. Full T-BEKK Model Estimation Results, Excluding China

Coe�cient Corn Corn with TGE Wheat Soybeans

CBOT MATIF CBOT MATIF TGE CBOT LIFFE CBOT TGE
(i=1) (i=2) (i=1) (i=2) (i=3) (i=1) (i=2) (i=1) (i=2)

ci1 0.448 -0.033 0.462 0.074 0.221 -0.056 1.249 0.206 0.275
(0.219) (0.118) (0.085) (0.060) (0.319) (0.045) (0.839) (0.052) (0.133)

ci2 -0.081 -0.001 0.002 -1.101 0.309
(0.094) (0.021) (0.013) (0.666) (0.144)

ci3 - - -0.049 - - - -
(0.099)

ai1 0.257 -0.039 0.108 -0.010 0.212 0.134 0.016 0.198 0.010
(0.091) (0.061) (0.064) (0.023) (0.045) (0.040) (0.038) (0.027) (0.035)

ai2 0.104 0.223 0.072 0.236 0.140 0.131 0.265 0.031 0.259
(0.046) (0.032) (0.105) (0.044) (0.074) (0.082) (0.071) (0.019) (0.066)

ai3 - - -0.019 0.014 -0.027 - - - -
(0.080) (0.030) (0.055)

bi1 0.936 0.014 0.725 0.000 -0.355 0.994 0.005 0.975 -0.007
(0.053) (0.026) (0.055) (0.040) (0.029) (0.004) (0.005) (0.009) (0.020)

bi2 0.004 0.969 -0.050 0.985 0.144 -0.037 0.953 -0.008 0.955
(0.019) (0.013) (0.049) (0.012) (0.048) (0.017) (0.019) (0.010) (0.027)

bi3 - - 0.385 -0.023 1.098 - - - -
(0.060) (0.037) (0.043)

Wald joint test for cross-correlation coe�cients (H0: aij = bij = 0, ∀I 6= j)

Chi-sq 7.465 966.741 20.265 2.489
p-value 0.113 0.000 0.000 0.647

Test for standardized squared residuals (H0: no autocorrelation)

LB(6) 3.671 7.750 2.268 3.644 11.458 10.682 10.982 2.995 1.477
p-value 0.721 0.257 0.894 0.725 0.075 0.099 0.089 0.809 0.961

LB(12) 6.211 14.642 3.888 9.716 12.818 15.316 16.751 6.706 2.621
p-value 0.905 0.262 0.985 0.641 0.382 0.225 0.159 0.876 0.998

Log likelihood -4,089.9 -6,124.6 -8,107.4 -5,129.3
# observations 1,105 1,115 960 1,227

Note: CBOT=Chicago; MATIF=France-Paris; LIFFE=United Kingdom-London; TGE=Japan-Tokyo. The sym-
bol (-) stands for not applicable. Standard errors reported in parentheses. LB stands for the Ljung-Box statistic.
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Table B.3. CCC Model Estimation Results, Excluding China

Coe�cient Corn Corn with TGE Wheat Soybeans

CBOT MATIF CBOT MATIF TGE CBOT LIFFE CBOT TGE
(i=1) (i=2) (i=1) (i=2) (i=3) (i=1) (i=2) (i=1) (i=2)

ωi 0.655 0.027 0.554 0.024 0.987 0.342 0.046 0.037 0.412
(0.592) (0.017) (0.656) (0.015) (0.497) (0.214) (0.031) (0.019) (0.566)

αi 0.126 0.128 0.111 0.126 0.170 0.100 0.145 0.058 0.086
(0.061) (0.050) (0.078) (0.049) (0.059) (0.028) (0.048) (0.011) (0.065)

βi 0.736 0.872 0.770 0.874 0.590 0.836 0.851 0.932 0.857
(0.176) (0.045) (0.212) (0.044) (0.157) (0.060) (0.048) (0.013) (0.139)

ρi1 1.000 0.391 1.000 0.382 0.580 1.000 0.497 1.000 0.409
(0.031) (0.031) (0.029) (0.025) (0.030)

ρi2 1.000 1.000 0.362 1.000 1.000
(0.030)

ρi3 - - 1.000 - - - -

Test for standardized squared residuals (H0: no autocorrelation)

LB(6) 3.761 1.707 4.741 1.315 2.589 4.327 7.578 2.546 1.028
p-value 0.709 0.945 0.577 0.971 0.858 0.632 0.271 0.863 0.985

LB(12) 4.613 7.037 6.037 5.454 3.950 10.179 15.556 5.738 1.569
p-value 0.970 0.855 0.914 0.941 0.984 0.600 0.212 0.929 1.000

Log likelihood -4,193.8 -6,278.4 -3,735.1 -5,188.9
# observations 1,105 1,115 960 1,227

Note: CBOT=Chicago; MATIF=France-Paris; LIFFE=United Kingdom-London; TGE=Japan-Tokyo. The sym-
bol (-) stands for not applicable. Standard errors reported in parentheses. LB stands for the Ljung-Box statistic.
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Table B.4. DCC Model Estimation Results, Excluding China

Coe�cient Corn Corn with TGE Wheat Soybeans

CBOT MATIF CBOT MATIF TGE CBOT LIFFE CBOT TGE
(i=1) (i=2) (i=1) (i=2) (i=3) (i=1) (i=2) (i=1) (i=2)

ωi 0.655 0.027 0.554 0.024 0.987 0.342 0.046 0.037 0.412
(0.590) (0.017) (0.655) (0.015) (0.492) (0.213) (0.031) (0.019) (0.565)

αi 0.126 0.128 0.111 0.126 0.170 0.100 0.145 0.058 0.086
(0.061) (0.050) (0.078) (0.049) (0.059) (0.028) (0.047) (0.011) (0.065)

βi 0.736 0.872 0.770 0.874 0.590 0.836 0.851 0.932 0.857
(0.176) (0.045) (0.213) (0.044) (0.157) (0.060) (0.047) (0.013) (0.139)

α 0.041 0.011 0.010 0.000
(0.031) (0.014) (0.005) (0.054)

β 0.914 0.971 0.986 0.000
(0.091) (0.056) (0.007) (3.560)

Test for standardized squared residuals (H0: no autocorrelation)

LB(6) 3.126 2.250 4.327 1.266 2.582 4.324 6.582 2.537 1.028
p-value 0.793 0.895 0.632 0.973 0.859 0.633 0.361 0.864 0.985

LB(12) 3.952 7.678 5.704 5.365 3.906 8.961 14.449 5.738 1.569
p-value 0.984 0.810 0.930 0.945 0.985 0.706 0.273 0.929 1.000

Log likelihood -4,180.0 -6,270.5 -3,723.9 -5,188.9
# observations 1,105 1,115 960 1,227

Note: CBOT=Chicago; MATIF=France-Paris; LIFFE=United Kingdom-London; TGE=Japan-Tokyo. Standard
errors reported in parentheses. LB stands for the Ljung-Box statistic.
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Table B.5. Estimated Break Dates

Corn Wheat Soybeans

Exchange Break Date Exchange Break Date Exchange Break Date

CBOT 06/27/2008 (last) CBOT 02/22/2008 CBOT 02/27/2008 (�rst)
MATIF 06/05/2008 LIFFE 06/25/2007 (�rst) DCE 07/31/2008 (last)
DCE 02/27/2008 (�rst) ZCE 11/04/2008 (last) TGE 07/16/2008

Note: CBOT=Chicago; MATIF=France-Paris; DCE=China-Dalian; LIFFE=United Kingdom-London;
ZCE=China-Zhengzhou; TGE=Japan-Tokyo. The estimated break dates are based on Lavielle and Moulines
(2000) test for structural breaks.
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